File size: 8,322 Bytes
be9242e
 
 
 
f6fb489
 
be9242e
 
 
 
 
 
 
 
 
 
 
f6fb489
be9242e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
license: other
base_model: nvidia/mit-b5
tags:
- image-segmentation
- vision
- generated_from_trainer
model-index:
- name: ecc_segformerv2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ecc_segformerv2

This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the rishitunu/ecc_crackdetector_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3478
- Mean Iou: 0.0862
- Mean Accuracy: 0.1924
- Overall Accuracy: 0.1924
- Accuracy Background: nan
- Accuracy Crack: 0.1924
- Iou Background: 0.0
- Iou Crack: 0.1723

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
| 0.1019        | 1.0   | 251   | 0.5116          | 0.1490   | 0.3280        | 0.3280           | nan                 | 0.3280         | 0.0            | 0.2979    |
| 0.0938        | 2.0   | 502   | 0.4725          | 0.1144   | 0.2400        | 0.2400           | nan                 | 0.2400         | 0.0            | 0.2287    |
| 0.098         | 3.0   | 753   | 0.5117          | 0.1276   | 0.2748        | 0.2748           | nan                 | 0.2748         | 0.0            | 0.2552    |
| 0.1018        | 4.0   | 1004  | 0.3870          | 0.1053   | 0.2254        | 0.2254           | nan                 | 0.2254         | 0.0            | 0.2106    |
| 0.0928        | 5.0   | 1255  | 0.2907          | 0.0772   | 0.1630        | 0.1630           | nan                 | 0.1630         | 0.0            | 0.1544    |
| 0.0936        | 6.0   | 1506  | 0.5220          | 0.1193   | 0.2544        | 0.2544           | nan                 | 0.2544         | 0.0            | 0.2385    |
| 0.077         | 7.0   | 1757  | 0.1608          | 0.0617   | 0.1308        | 0.1308           | nan                 | 0.1308         | 0.0            | 0.1235    |
| 0.0963        | 8.0   | 2008  | 0.1756          | 0.0456   | 0.0923        | 0.0923           | nan                 | 0.0923         | 0.0            | 0.0912    |
| 0.0958        | 9.0   | 2259  | 0.2027          | 0.0862   | 0.1813        | 0.1813           | nan                 | 0.1813         | 0.0            | 0.1725    |
| 0.0755        | 10.0  | 2510  | 0.2327          | 0.0888   | 0.1832        | 0.1832           | nan                 | 0.1832         | 0.0            | 0.1776    |
| 0.0632        | 11.0  | 2761  | 0.2169          | 0.0846   | 0.1863        | 0.1863           | nan                 | 0.1863         | 0.0            | 0.1693    |
| 0.0638        | 12.0  | 3012  | 0.2309          | 0.0852   | 0.1957        | 0.1957           | nan                 | 0.1957         | 0.0            | 0.1704    |
| 0.0509        | 13.0  | 3263  | 0.3209          | 0.1236   | 0.2910        | 0.2910           | nan                 | 0.2910         | 0.0            | 0.2472    |
| 0.0497        | 14.0  | 3514  | 0.3274          | 0.1045   | 0.2354        | 0.2354           | nan                 | 0.2354         | 0.0            | 0.2089    |
| 0.0396        | 15.0  | 3765  | 0.3415          | 0.1005   | 0.2257        | 0.2257           | nan                 | 0.2257         | 0.0            | 0.2010    |
| 0.0373        | 16.0  | 4016  | 0.3530          | 0.1122   | 0.2486        | 0.2486           | nan                 | 0.2486         | 0.0            | 0.2244    |
| 0.0388        | 17.0  | 4267  | 0.3312          | 0.0889   | 0.1974        | 0.1974           | nan                 | 0.1974         | 0.0            | 0.1778    |
| 0.0346        | 18.0  | 4518  | 0.3061          | 0.0903   | 0.2125        | 0.2125           | nan                 | 0.2125         | 0.0            | 0.1807    |
| 0.0296        | 19.0  | 4769  | 0.3223          | 0.1000   | 0.2315        | 0.2315           | nan                 | 0.2315         | 0.0            | 0.2000    |
| 0.0311        | 20.0  | 5020  | 0.3458          | 0.0943   | 0.2237        | 0.2237           | nan                 | 0.2237         | 0.0            | 0.1887    |
| 0.0303        | 21.0  | 5271  | 0.3283          | 0.0975   | 0.2255        | 0.2255           | nan                 | 0.2255         | 0.0            | 0.1951    |
| 0.0249        | 22.0  | 5522  | 0.3387          | 0.0998   | 0.2327        | 0.2327           | nan                 | 0.2327         | 0.0            | 0.1996    |
| 0.0298        | 23.0  | 5773  | 0.3332          | 0.0973   | 0.2242        | 0.2242           | nan                 | 0.2242         | 0.0            | 0.1946    |
| 0.0239        | 24.0  | 6024  | 0.3778          | 0.1146   | 0.2634        | 0.2634           | nan                 | 0.2634         | 0.0            | 0.2292    |
| 0.0238        | 25.0  | 6275  | 0.3250          | 0.0909   | 0.2081        | 0.2081           | nan                 | 0.2081         | 0.0            | 0.1818    |
| 0.0242        | 26.0  | 6526  | 0.3826          | 0.1002   | 0.2285        | 0.2285           | nan                 | 0.2285         | 0.0            | 0.2004    |
| 0.017         | 27.0  | 6777  | 0.3543          | 0.1058   | 0.2367        | 0.2367           | nan                 | 0.2367         | 0.0            | 0.2115    |
| 0.0241        | 28.0  | 7028  | 0.3491          | 0.0915   | 0.2069        | 0.2069           | nan                 | 0.2069         | 0.0            | 0.1830    |
| 0.0203        | 29.0  | 7279  | 0.3354          | 0.0899   | 0.2056        | 0.2056           | nan                 | 0.2056         | 0.0            | 0.1798    |
| 0.0206        | 30.0  | 7530  | 0.3592          | 0.0944   | 0.2165        | 0.2165           | nan                 | 0.2165         | 0.0            | 0.1888    |
| 0.0211        | 31.0  | 7781  | 0.3200          | 0.0943   | 0.2100        | 0.2100           | nan                 | 0.2100         | 0.0            | 0.1886    |
| 0.0209        | 32.0  | 8032  | 0.3401          | 0.0850   | 0.1941        | 0.1941           | nan                 | 0.1941         | 0.0            | 0.1701    |
| 0.0172        | 33.0  | 8283  | 0.3326          | 0.0879   | 0.1986        | 0.1986           | nan                 | 0.1986         | 0.0            | 0.1759    |
| 0.0187        | 34.0  | 8534  | 0.3343          | 0.0869   | 0.1960        | 0.1960           | nan                 | 0.1960         | 0.0            | 0.1739    |
| 0.0181        | 35.0  | 8785  | 0.3223          | 0.0824   | 0.1835        | 0.1835           | nan                 | 0.1835         | 0.0            | 0.1648    |
| 0.0168        | 36.0  | 9036  | 0.3461          | 0.0864   | 0.1933        | 0.1933           | nan                 | 0.1933         | 0.0            | 0.1727    |
| 0.0169        | 37.0  | 9287  | 0.3438          | 0.0848   | 0.1888        | 0.1888           | nan                 | 0.1888         | 0.0            | 0.1695    |
| 0.0182        | 38.0  | 9538  | 0.3506          | 0.0865   | 0.1933        | 0.1933           | nan                 | 0.1933         | 0.0            | 0.1730    |
| 0.0167        | 39.0  | 9789  | 0.3535          | 0.0869   | 0.1946        | 0.1946           | nan                 | 0.1946         | 0.0            | 0.1739    |
| 0.0174        | 39.84 | 10000 | 0.3478          | 0.0862   | 0.1924        | 0.1924           | nan                 | 0.1924         | 0.0            | 0.1723    |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.14.4
- Tokenizers 0.13.3