Model save
Browse files
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b5
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: ecc_segformerv3
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# ecc_segformerv3
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.1344
|
19 |
+
- Mean Iou: 0.0005
|
20 |
+
- Mean Accuracy: 0.0010
|
21 |
+
- Overall Accuracy: 0.0010
|
22 |
+
- Accuracy Background: nan
|
23 |
+
- Accuracy Crack: 0.0010
|
24 |
+
- Iou Background: 0.0
|
25 |
+
- Iou Crack: 0.0010
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 0.0006
|
45 |
+
- train_batch_size: 1
|
46 |
+
- eval_batch_size: 1
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- training_steps: 5000
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
|
56 |
+
| 0.1306 | 1.0 | 1001 | 0.1114 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
|
57 |
+
| 0.107 | 2.0 | 2002 | 0.1238 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
|
58 |
+
| 0.1285 | 3.0 | 3003 | 0.1631 | 0.0024 | 0.0049 | 0.0049 | nan | 0.0049 | 0.0 | 0.0048 |
|
59 |
+
| 0.0887 | 4.0 | 4004 | 0.1083 | 0.0002 | 0.0003 | 0.0003 | nan | 0.0003 | 0.0 | 0.0003 |
|
60 |
+
| 0.0828 | 5.0 | 5000 | 0.1344 | 0.0005 | 0.0010 | 0.0010 | nan | 0.0010 | 0.0 | 0.0010 |
|
61 |
+
|
62 |
+
|
63 |
+
### Framework versions
|
64 |
+
|
65 |
+
- Transformers 4.32.0.dev0
|
66 |
+
- Pytorch 2.0.1+cpu
|
67 |
+
- Datasets 2.14.4
|
68 |
+
- Tokenizers 0.13.3
|