--- license: other base_model: nvidia/mit-b5 tags: - generated_from_trainer model-index: - name: ecc_segformerv3 results: [] --- # ecc_segformerv3 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1344 - Mean Iou: 0.0005 - Mean Accuracy: 0.0010 - Overall Accuracy: 0.0010 - Accuracy Background: nan - Accuracy Crack: 0.0010 - Iou Background: 0.0 - Iou Crack: 0.0010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:| | 0.1306 | 1.0 | 1001 | 0.1114 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | | 0.107 | 2.0 | 2002 | 0.1238 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 | | 0.1285 | 3.0 | 3003 | 0.1631 | 0.0024 | 0.0049 | 0.0049 | nan | 0.0049 | 0.0 | 0.0048 | | 0.0887 | 4.0 | 4004 | 0.1083 | 0.0002 | 0.0003 | 0.0003 | nan | 0.0003 | 0.0 | 0.0003 | | 0.0828 | 5.0 | 5000 | 0.1344 | 0.0005 | 0.0010 | 0.0010 | nan | 0.0010 | 0.0 | 0.0010 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cpu - Datasets 2.14.4 - Tokenizers 0.13.3