risingodegua commited on
Commit
2c46e32
1 Parent(s): 191bbe7

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +119 -0
README.md ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - structured-data-classification
4
+ - sklearn
5
+ dataset:
6
+ - wine-quality
7
+ widget:
8
+ structuredData:
9
+ fixed_acidity:
10
+ - 7.4
11
+ - 7.8
12
+ - 10.3
13
+ volatile_acidity:
14
+ - 0.7
15
+ - 0.88
16
+ - 0.32
17
+ citric_acid:
18
+ - 0
19
+ - 0
20
+ - 0.45
21
+ residual_sugar:
22
+ - 1.9
23
+ - 2.6
24
+ - 6.4
25
+ chlorides:
26
+ - 0.076
27
+ - 0.098
28
+ - 0.073
29
+ free_sulfur_dioxide:
30
+ - 11
31
+ - 25
32
+ - 5
33
+ total_sulfur_dioxide:
34
+ - 34
35
+ - 67
36
+ - 13
37
+ density:
38
+ - 0.9978
39
+ - 0.9968
40
+ - 0.9976
41
+ pH:
42
+ - 3.51
43
+ - 3.2
44
+ - 3.23
45
+ sulphates:
46
+ - 0.56
47
+ - 0.68
48
+ - 0.82
49
+ alcohol:
50
+ - 9.4
51
+ - 9.8
52
+ - 12.6
53
+ ---
54
+
55
+ ## Wine Quality classification
56
+
57
+ ### A Simple Example of Scikit-learn Pipeline
58
+
59
+ > Inspired by https://towardsdatascience.com/a-simple-example-of-pipeline-in-machine-learning-with-scikit-learn-e726ffbb6976 by Saptashwa Bhattacharyya
60
+
61
+
62
+ ### How to use
63
+
64
+ ```python
65
+ from huggingface_hub import hf_hub_url, cached_download
66
+ import joblib
67
+ import pandas as pd
68
+
69
+ REPO_ID = "julien-c/wine-quality"
70
+ FILENAME = "sklearn_model.joblib"
71
+
72
+
73
+ model = joblib.load(cached_download(
74
+ hf_hub_url(REPO_ID, FILENAME)
75
+ ))
76
+
77
+ # model is a `sklearn.pipeline.Pipeline`
78
+ ```
79
+
80
+ #### Get sample data from this repo
81
+
82
+ ```python
83
+ data_file = cached_download(
84
+ hf_hub_url(REPO_ID, "winequality-red.csv")
85
+ )
86
+ winedf = pd.read_csv(data_file, sep=";")
87
+
88
+
89
+ X = winedf.drop(["quality"], axis=1)
90
+ Y = winedf["quality"]
91
+
92
+ print(X[:3])
93
+ ```
94
+
95
+ | | fixed acidity | volatile acidity | citric acid | residual sugar | chlorides | free sulfur dioxide | total sulfur dioxide | density | pH | sulphates | alcohol |
96
+ |---:|----------------:|-------------------:|--------------:|-----------------:|------------:|----------------------:|-----------------------:|----------:|-----:|------------:|----------:|
97
+ | 0 | 7.4 | 0.7 | 0 | 1.9 | 0.076 | 11 | 34 | 0.9978 | 3.51 | 0.56 | 9.4 |
98
+ | 1 | 7.8 | 0.88 | 0 | 2.6 | 0.098 | 25 | 67 | 0.9968 | 3.2 | 0.68 | 9.8 |
99
+ | 2 | 7.8 | 0.76 | 0.04 | 2.3 | 0.092 | 15 | 54 | 0.997 | 3.26 | 0.65 | 9.8 |
100
+
101
+
102
+ #### Get your prediction
103
+
104
+ ```python
105
+ labels = model.predict(X[:3])
106
+ # [5, 5, 5]
107
+ ```
108
+
109
+ #### Eval
110
+
111
+ ```python
112
+ model.score(X, Y)
113
+ # 0.6616635397123202
114
+ ```
115
+
116
+ ### 🍷 Disclaimer
117
+
118
+ No red wine was drunk (unfortunately) while training this model 🍷
119
+