risingodegua
commited on
Commit
•
2c46e32
1
Parent(s):
191bbe7
Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- structured-data-classification
|
4 |
+
- sklearn
|
5 |
+
dataset:
|
6 |
+
- wine-quality
|
7 |
+
widget:
|
8 |
+
structuredData:
|
9 |
+
fixed_acidity:
|
10 |
+
- 7.4
|
11 |
+
- 7.8
|
12 |
+
- 10.3
|
13 |
+
volatile_acidity:
|
14 |
+
- 0.7
|
15 |
+
- 0.88
|
16 |
+
- 0.32
|
17 |
+
citric_acid:
|
18 |
+
- 0
|
19 |
+
- 0
|
20 |
+
- 0.45
|
21 |
+
residual_sugar:
|
22 |
+
- 1.9
|
23 |
+
- 2.6
|
24 |
+
- 6.4
|
25 |
+
chlorides:
|
26 |
+
- 0.076
|
27 |
+
- 0.098
|
28 |
+
- 0.073
|
29 |
+
free_sulfur_dioxide:
|
30 |
+
- 11
|
31 |
+
- 25
|
32 |
+
- 5
|
33 |
+
total_sulfur_dioxide:
|
34 |
+
- 34
|
35 |
+
- 67
|
36 |
+
- 13
|
37 |
+
density:
|
38 |
+
- 0.9978
|
39 |
+
- 0.9968
|
40 |
+
- 0.9976
|
41 |
+
pH:
|
42 |
+
- 3.51
|
43 |
+
- 3.2
|
44 |
+
- 3.23
|
45 |
+
sulphates:
|
46 |
+
- 0.56
|
47 |
+
- 0.68
|
48 |
+
- 0.82
|
49 |
+
alcohol:
|
50 |
+
- 9.4
|
51 |
+
- 9.8
|
52 |
+
- 12.6
|
53 |
+
---
|
54 |
+
|
55 |
+
## Wine Quality classification
|
56 |
+
|
57 |
+
### A Simple Example of Scikit-learn Pipeline
|
58 |
+
|
59 |
+
> Inspired by https://towardsdatascience.com/a-simple-example-of-pipeline-in-machine-learning-with-scikit-learn-e726ffbb6976 by Saptashwa Bhattacharyya
|
60 |
+
|
61 |
+
|
62 |
+
### How to use
|
63 |
+
|
64 |
+
```python
|
65 |
+
from huggingface_hub import hf_hub_url, cached_download
|
66 |
+
import joblib
|
67 |
+
import pandas as pd
|
68 |
+
|
69 |
+
REPO_ID = "julien-c/wine-quality"
|
70 |
+
FILENAME = "sklearn_model.joblib"
|
71 |
+
|
72 |
+
|
73 |
+
model = joblib.load(cached_download(
|
74 |
+
hf_hub_url(REPO_ID, FILENAME)
|
75 |
+
))
|
76 |
+
|
77 |
+
# model is a `sklearn.pipeline.Pipeline`
|
78 |
+
```
|
79 |
+
|
80 |
+
#### Get sample data from this repo
|
81 |
+
|
82 |
+
```python
|
83 |
+
data_file = cached_download(
|
84 |
+
hf_hub_url(REPO_ID, "winequality-red.csv")
|
85 |
+
)
|
86 |
+
winedf = pd.read_csv(data_file, sep=";")
|
87 |
+
|
88 |
+
|
89 |
+
X = winedf.drop(["quality"], axis=1)
|
90 |
+
Y = winedf["quality"]
|
91 |
+
|
92 |
+
print(X[:3])
|
93 |
+
```
|
94 |
+
|
95 |
+
| | fixed acidity | volatile acidity | citric acid | residual sugar | chlorides | free sulfur dioxide | total sulfur dioxide | density | pH | sulphates | alcohol |
|
96 |
+
|---:|----------------:|-------------------:|--------------:|-----------------:|------------:|----------------------:|-----------------------:|----------:|-----:|------------:|----------:|
|
97 |
+
| 0 | 7.4 | 0.7 | 0 | 1.9 | 0.076 | 11 | 34 | 0.9978 | 3.51 | 0.56 | 9.4 |
|
98 |
+
| 1 | 7.8 | 0.88 | 0 | 2.6 | 0.098 | 25 | 67 | 0.9968 | 3.2 | 0.68 | 9.8 |
|
99 |
+
| 2 | 7.8 | 0.76 | 0.04 | 2.3 | 0.092 | 15 | 54 | 0.997 | 3.26 | 0.65 | 9.8 |
|
100 |
+
|
101 |
+
|
102 |
+
#### Get your prediction
|
103 |
+
|
104 |
+
```python
|
105 |
+
labels = model.predict(X[:3])
|
106 |
+
# [5, 5, 5]
|
107 |
+
```
|
108 |
+
|
109 |
+
#### Eval
|
110 |
+
|
111 |
+
```python
|
112 |
+
model.score(X, Y)
|
113 |
+
# 0.6616635397123202
|
114 |
+
```
|
115 |
+
|
116 |
+
### 🍷 Disclaimer
|
117 |
+
|
118 |
+
No red wine was drunk (unfortunately) while training this model 🍷
|
119 |
+
|