riteshm06's picture
Create handler.py
c4e5cea
import torch
import transformers
from typing import Dict, Any
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
class EndpointHandler:
def __init__(self, model_path: str = ""):
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
return_dict=True,
device_map='auto',
load_in_8bit=True,
torch_dtype=dtype,
trust_remote_code=True)
self.pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
temperature=0.8,
repetition_penalty=1.1,
max_new_tokens=1000,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
prompt = data.pop("inputs", data)
llm_response = self.pipeline(
prompt,
return_full_text=False
)
return llm_response[0]['generated_text'].strip()