added code files
Browse files- code/data_preprocessing.py +198 -0
- code/file.pdf +3 -0
- code/gpt-finetune.py +904 -0
- code/gpt-run.py +85 -0
- code/myocr.py +82 -0
- code/outfile.png +0 -0
code/data_preprocessing.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re, glob, string
|
2 |
+
import math
|
3 |
+
from tqdm import tqdm
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
import torch
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained('gpt2', bos_token='<|startoftext|>', eos_token='<|endoftext|>', pad_token='<|pad|>')
|
7 |
+
from nltk.tokenize import sent_tokenize
|
8 |
+
|
9 |
+
# ----------------------------- Cleaning process 1/2 -----------------------------
|
10 |
+
|
11 |
+
def sanitize(line):
|
12 |
+
# print('before', line)
|
13 |
+
line2 = re.sub(r'\[.+\]','',line)
|
14 |
+
# print('after',line2)
|
15 |
+
for a in ["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"]:
|
16 |
+
line2 = line2.replace(a,'')
|
17 |
+
line2 = re.sub(r'\b[A-Z]+\b','',line2.strip())
|
18 |
+
line2 = re.sub(r'\d','',line2)
|
19 |
+
line2 = line2.translate(str.maketrans('','',"‟“’❝❞‚‘‛❛❜❟â")) #just removed the quotes
|
20 |
+
line2 = line2.translate(str.maketrans('','',string.punctuation))
|
21 |
+
line2 = re.sub(r'\s+',' ',line2).strip()
|
22 |
+
return line2
|
23 |
+
|
24 |
+
def remove_footnotes_and_clean(sents):
|
25 |
+
sents = [x.replace("'",'').replace('*','').replace('’®','').replace('’','') for x in sents]
|
26 |
+
s = ''
|
27 |
+
for line in sents:
|
28 |
+
try:
|
29 |
+
if line.strip()[-1] != '-':
|
30 |
+
s = s + line.strip() + ' '
|
31 |
+
else:
|
32 |
+
s = s + line.strip()
|
33 |
+
except:
|
34 |
+
print(sents)
|
35 |
+
input()
|
36 |
+
s = re.sub(r'\s+',' ',s)
|
37 |
+
return s
|
38 |
+
|
39 |
+
path = 'text_files/'
|
40 |
+
ml = sorted(glob.glob(path+'*.txt'))
|
41 |
+
show = False
|
42 |
+
|
43 |
+
path = 'clean_text_files/'
|
44 |
+
for k,m in enumerate(tqdm(ml, total=len(ml), ncols=100)):
|
45 |
+
# m = ml[-1]
|
46 |
+
# if k < 67:
|
47 |
+
# continue
|
48 |
+
file = open(m,'r')
|
49 |
+
content = file.readlines()
|
50 |
+
file.close()
|
51 |
+
|
52 |
+
if show:
|
53 |
+
print(m)
|
54 |
+
|
55 |
+
paras = []
|
56 |
+
sents = []
|
57 |
+
|
58 |
+
mean_spaces = []
|
59 |
+
footnote_found = False
|
60 |
+
|
61 |
+
for line in content:
|
62 |
+
line2 = sanitize(line)
|
63 |
+
if re.search(r'^\W\s\w',line.strip()):
|
64 |
+
footnote_found = True
|
65 |
+
if re.search(r'^VOL.*\d\d\d\d.*\d$',line.strip()) or 'THE COLLECTED WORKS OF MAHATMA GANDHI' in line.strip():
|
66 |
+
# new page
|
67 |
+
footnote_found = False
|
68 |
+
|
69 |
+
if len(line2) > 5 and len(line2.split()) > 4 and footnote_found==False:
|
70 |
+
if show:
|
71 |
+
print(line.rstrip(),end='')
|
72 |
+
li_spaces = len(line) - len(line.strip())
|
73 |
+
if show:
|
74 |
+
print(li_spaces)
|
75 |
+
mean_spaces.append(li_spaces)
|
76 |
+
# input()
|
77 |
+
|
78 |
+
mean_spaces = math.floor(sum(mean_spaces)/len(mean_spaces))
|
79 |
+
if show:
|
80 |
+
print('ms',mean_spaces)
|
81 |
+
print(' '*mean_spaces+'^')
|
82 |
+
footnote_found = False
|
83 |
+
last_spaces = -1
|
84 |
+
i = 0
|
85 |
+
while i < len(content)-1:
|
86 |
+
# line2 = re.sub(r'[A-Z]','',line.strip())
|
87 |
+
# line2 = re.sub(r'\[\w+\]','',line2)
|
88 |
+
line = content[i]
|
89 |
+
li_spaces = len(line) - len(line.strip())
|
90 |
+
if re.search(r'^\W\s\w',line.strip()):
|
91 |
+
footnote_found = True
|
92 |
+
if re.search(r'^VOL.*\d\d\d\d.*\d$',line.strip()) or 'THE COLLECTED WORKS OF MAHATMA GANDHI' in line.strip():
|
93 |
+
# new page
|
94 |
+
footnote_found = False
|
95 |
+
i+=1
|
96 |
+
# print('--',line.rstrip())
|
97 |
+
continue
|
98 |
+
if footnote_found == False:
|
99 |
+
if not (li_spaces > mean_spaces):
|
100 |
+
# when the spaces in current line is equal or one tab shy from the mean spaces
|
101 |
+
line2 = sanitize(line)
|
102 |
+
if len(line2) > 5 and len(line2.split()) > 4:
|
103 |
+
if show:
|
104 |
+
print('++',line.rstrip())
|
105 |
+
sents.append(line)
|
106 |
+
last_spaces = li_spaces
|
107 |
+
elif last_spaces == li_spaces:
|
108 |
+
if show:
|
109 |
+
print('++',line.rstrip())
|
110 |
+
sents.append(line)
|
111 |
+
else:
|
112 |
+
last_spaces = -1
|
113 |
+
if show:
|
114 |
+
print('--',line.rstrip())
|
115 |
+
else:
|
116 |
+
# the current line has more or less spaces as compared to the mean
|
117 |
+
next_line = content[i+1]
|
118 |
+
lj_spaces = len(next_line) - len(next_line.strip())
|
119 |
+
if not (lj_spaces > mean_spaces):
|
120 |
+
# print('b4', line)
|
121 |
+
line1 = sanitize(content[i])
|
122 |
+
line2 = sanitize(next_line)
|
123 |
+
# print('now',line2)
|
124 |
+
if len(line1) > 5 and len(line1.split()) > 4 and len(line2) > 5 and len(line2.split()) > 4:
|
125 |
+
sent_text = remove_footnotes_and_clean(sents)
|
126 |
+
paras.append(sent_text)
|
127 |
+
if show:
|
128 |
+
print('++',line.rstrip(),'<------NEW PARA')
|
129 |
+
sents = [line]
|
130 |
+
# print('$$',paras[-1])
|
131 |
+
else:
|
132 |
+
last_spaces = -1
|
133 |
+
if show:
|
134 |
+
print('--',line.rstrip())
|
135 |
+
else:
|
136 |
+
last_spaces = -1
|
137 |
+
if show:
|
138 |
+
print('--',line.rstrip())
|
139 |
+
else:
|
140 |
+
last_spaces = -1
|
141 |
+
if show:
|
142 |
+
print('--',line.rstrip())
|
143 |
+
if show:
|
144 |
+
input('wait')
|
145 |
+
i+=1
|
146 |
+
|
147 |
+
file = open(path+m.split('/')[-1],'w')
|
148 |
+
file.write('\n'.join(paras[1:]))
|
149 |
+
file.close()
|
150 |
+
# input('here wait')
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
# ----------------------------- Cleaning process 2/2 -----------------------------
|
155 |
+
path = 'clean_text_files/'
|
156 |
+
ml = sorted(glob.glob(path+'*.txt'))
|
157 |
+
|
158 |
+
text = []
|
159 |
+
|
160 |
+
for m in tqdm(range(1,99)):
|
161 |
+
file = open(path+str(m)+'.txt','r')
|
162 |
+
text += file.readlines()
|
163 |
+
file.close()
|
164 |
+
|
165 |
+
file = open('all_paras.txt','w')
|
166 |
+
file.write(''.join(text))
|
167 |
+
file.close()
|
168 |
+
|
169 |
+
sents = []
|
170 |
+
tcsents = [] # transformer compatible sents
|
171 |
+
para_stack = []
|
172 |
+
for para in tqdm(text):
|
173 |
+
para = para.strip()
|
174 |
+
sents += sent_tokenize(para)
|
175 |
+
para_stack = [para] + para_stack
|
176 |
+
while len(para_stack)!=0:
|
177 |
+
top_para = para_stack.pop(0)
|
178 |
+
if len(tokenizer('<|startoftext|>'+ top_para + '<|endoftext|>')['input_ids']) > 200: # <-------------
|
179 |
+
ts = sent_tokenize(top_para)
|
180 |
+
if len(ts) > 1:
|
181 |
+
para_stack = [' '.join(ts[int(len(ts)/2):])] + para_stack # second half
|
182 |
+
para_stack = [' '.join(ts[:int(len(ts)/2)])] + para_stack # first half
|
183 |
+
else:
|
184 |
+
tcsents.append(top_para)
|
185 |
+
else:
|
186 |
+
tcsents.append(top_para)
|
187 |
+
|
188 |
+
|
189 |
+
file = open('all_sents.txt','w')
|
190 |
+
file.write('\n'.join(sents))
|
191 |
+
file.close()
|
192 |
+
|
193 |
+
file = open('all_tc_sents_200.txt','w')
|
194 |
+
file.write('\n'.join(tcsents))
|
195 |
+
file.close()
|
196 |
+
|
197 |
+
|
198 |
+
|
code/file.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b2a57a58bc338df0a10eb28d73efe347d820bdd58a271b1f032562c8a857aa2
|
3 |
+
size 1112205
|
code/gpt-finetune.py
ADDED
@@ -0,0 +1,904 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import datetime
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
import seaborn as sns
|
7 |
+
import numpy as np
|
8 |
+
import random
|
9 |
+
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch.utils.data import Dataset, DataLoader, random_split, RandomSampler, SequentialSampler
|
14 |
+
|
15 |
+
|
16 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2Config, GPT2LMHeadModel
|
17 |
+
from transformers import AdamW, get_linear_schedule_with_warmup
|
18 |
+
|
19 |
+
import nltk
|
20 |
+
nltk.download('punkt')
|
21 |
+
|
22 |
+
import sys
|
23 |
+
|
24 |
+
import pytz
|
25 |
+
IST = pytz.timezone('Asia/Kolkata')
|
26 |
+
stamp = datetime.datetime.now(IST).strftime("%c")
|
27 |
+
|
28 |
+
print('\n')
|
29 |
+
print('='*100)
|
30 |
+
print('='*100)
|
31 |
+
print('\t\t=Experiment6=',stamp)
|
32 |
+
print('='*100)
|
33 |
+
print('='*100)
|
34 |
+
|
35 |
+
out_path = '/media/data_dump/Ritwik/ggpt/'
|
36 |
+
|
37 |
+
|
38 |
+
# for i in range(10):
|
39 |
+
# print(i)
|
40 |
+
# time.sleep(1)
|
41 |
+
|
42 |
+
|
43 |
+
# exit()
|
44 |
+
|
45 |
+
hyper_params = {'rseed': 123}
|
46 |
+
|
47 |
+
import torch, numpy as np, random, transformers, psutil, time
|
48 |
+
os.environ['PYTHONHASHSEED'] = str(hyper_params['rseed'])
|
49 |
+
# Torch RNG
|
50 |
+
torch.manual_seed(hyper_params['rseed'])
|
51 |
+
torch.cuda.manual_seed(hyper_params['rseed'])
|
52 |
+
torch.cuda.manual_seed_all(hyper_params['rseed'])
|
53 |
+
# Python RNG
|
54 |
+
np.random.seed(hyper_params['rseed'])
|
55 |
+
random.seed(hyper_params['rseed'])
|
56 |
+
transformers.set_seed(hyper_params['rseed'])
|
57 |
+
|
58 |
+
# Load the GPT tokenizer.
|
59 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2', bos_token='<|startoftext|>', eos_token='<|endoftext|>', pad_token='<|pad|>') #gpt2-medium
|
60 |
+
|
61 |
+
sfile = '/media/nas_mount/Ritwik/Ai4Bharat_text_corpora/data/en/en_clean.txt'
|
62 |
+
print(sfile)
|
63 |
+
file = open(sfile,'r')
|
64 |
+
lines = file.readlines()
|
65 |
+
file.close()
|
66 |
+
lines = [[x.strip()] for x in lines]
|
67 |
+
|
68 |
+
df = pd.DataFrame(lines, columns=['bio_main'])
|
69 |
+
|
70 |
+
print('Dataframe created')
|
71 |
+
df.dropna(inplace=True) #remove NA values
|
72 |
+
bios = df.bio_main.copy()
|
73 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
74 |
+
|
75 |
+
# doc_lengths = []
|
76 |
+
# for bio in bios:
|
77 |
+
# # get rough token count distribution
|
78 |
+
# tokens = nltk.word_tokenize(bio)
|
79 |
+
# doc_lengths.append(len(tokens))
|
80 |
+
# doc_lengths = np.array(doc_lengths)
|
81 |
+
# a = sns.distplot(doc_lengths)
|
82 |
+
# a.get_figure().savefig(out_path+"out.png")
|
83 |
+
# print('len(doc_lengths[doc_lengths > 768])/len(doc_lengths)',len(doc_lengths[doc_lengths > 768])/len(doc_lengths))
|
84 |
+
# print('np.average(doc_lengths)',np.average(doc_lengths))
|
85 |
+
# print(datetime.datetime.now(IST).strftime("%c"))
|
86 |
+
|
87 |
+
|
88 |
+
print("The max model length is {} for this model, although the actual embedding size for GPT small is 768".format(tokenizer.model_max_length))
|
89 |
+
print("The beginning of sequence token {} token has the id {}".format(tokenizer.convert_ids_to_tokens(tokenizer.bos_token_id), tokenizer.bos_token_id))
|
90 |
+
print("The end of sequence token {} has the id {}".format(tokenizer.convert_ids_to_tokens(tokenizer.eos_token_id), tokenizer.eos_token_id))
|
91 |
+
print("The padding token {} has the id {}".format(tokenizer.convert_ids_to_tokens(tokenizer.pad_token_id), tokenizer.pad_token_id))
|
92 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
93 |
+
|
94 |
+
batch_size = 8
|
95 |
+
|
96 |
+
class GPT2Dataset(Dataset):
|
97 |
+
|
98 |
+
def __init__(self, txt_list, tokenizer, gpt2_type="gpt2", max_length=768):
|
99 |
+
|
100 |
+
self.tokenizer = tokenizer
|
101 |
+
self.max_length = max_length
|
102 |
+
# self.input_ids = []
|
103 |
+
# self.attn_masks = []
|
104 |
+
self.sents = list(txt_list)
|
105 |
+
|
106 |
+
# for txt in txt_list:
|
107 |
+
# ###self.sents.append(txt)
|
108 |
+
|
109 |
+
# encodings_dict = tokenizer('<|startoftext|>'+ txt + '<|endoftext|>', truncation=True, max_length=max_length, padding="max_length")
|
110 |
+
|
111 |
+
# self.input_ids.append(torch.tensor(encodings_dict['input_ids']))
|
112 |
+
# self.attn_masks.append(torch.tensor(encodings_dict['attention_mask']))
|
113 |
+
|
114 |
+
def __len__(self):
|
115 |
+
# return len(self.input_ids)
|
116 |
+
return len(self.sents)
|
117 |
+
|
118 |
+
def __getitem__(self, idx):
|
119 |
+
# return self.input_ids[idx], self.attn_masks[idx]
|
120 |
+
txt = self.sents[idx]
|
121 |
+
encodings_dict = self.tokenizer('<|startoftext|>'+ txt + '<|endoftext|>', truncation=True, max_length=self.max_length, padding="max_length")
|
122 |
+
input_ids = torch.tensor(encodings_dict['input_ids'])
|
123 |
+
attn_masks = torch.tensor(encodings_dict['attention_mask'])
|
124 |
+
return input_ids, attn_masks
|
125 |
+
|
126 |
+
dataset = GPT2Dataset(bios, tokenizer, max_length=500)
|
127 |
+
|
128 |
+
# temp_dataloader = DataLoader(
|
129 |
+
# dataset, # The training samples.
|
130 |
+
# sampler = RandomSampler(dataset), # Select batches randomly
|
131 |
+
# batch_size = batch_size # Trains with this batch size.
|
132 |
+
# )
|
133 |
+
|
134 |
+
# for temp in temp_dataloader:
|
135 |
+
# print(temp)
|
136 |
+
# print(temp[0].shape)
|
137 |
+
# input()
|
138 |
+
|
139 |
+
# Split into training and validation sets
|
140 |
+
train_size = int(0.9 * len(dataset))
|
141 |
+
val_size = len(dataset) - train_size
|
142 |
+
|
143 |
+
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
144 |
+
|
145 |
+
print('{:>5,} training samples'.format(train_size))
|
146 |
+
print('{:>5,} validation samples'.format(val_size))
|
147 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
148 |
+
|
149 |
+
# Create the DataLoaders for our training and validation datasets.
|
150 |
+
# We'll take training samples in random order.
|
151 |
+
train_dataloader = DataLoader(
|
152 |
+
train_dataset, # The training samples.
|
153 |
+
sampler = RandomSampler(train_dataset), # Select batches randomly
|
154 |
+
batch_size = batch_size # Trains with this batch size.
|
155 |
+
)
|
156 |
+
|
157 |
+
# For validation the order doesn't matter, so we'll just read them sequentially.
|
158 |
+
validation_dataloader = DataLoader(
|
159 |
+
val_dataset, # The validation samples.
|
160 |
+
sampler = SequentialSampler(val_dataset), # Pull out batches sequentially.
|
161 |
+
batch_size = batch_size # Evaluate with this batch size.
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
# I'm not really doing anything with the config buheret
|
166 |
+
configuration = GPT2Config.from_pretrained('gpt2', output_hidden_states=False)
|
167 |
+
|
168 |
+
# instantiate the model
|
169 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2", config=configuration)
|
170 |
+
|
171 |
+
# this step is necessary because I've added some tokens (bos_token, etc) to the embeddings
|
172 |
+
# otherwise the tokenizer and model tensors won't match up
|
173 |
+
model.resize_token_embeddings(len(tokenizer))
|
174 |
+
|
175 |
+
# Tell pytorch to run this model on the GPU.
|
176 |
+
device = torch.device("cuda")
|
177 |
+
|
178 |
+
model = model.to(device)
|
179 |
+
|
180 |
+
print('Model loaded to GPU')
|
181 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
182 |
+
|
183 |
+
# checkpoint = torch.load(out_path+'model_save_768/final_checkpoint.pth.tar')
|
184 |
+
# print(model.load_state_dict(checkpoint['state_dict']))
|
185 |
+
# del checkpoint
|
186 |
+
# tokenizer = torch.load(out_path+'model_save_768/tokenizer_checkpoint.pth.tar') #.from_pretrained('/media/data_dump/Ritwik/ggpt/model_save_768/')
|
187 |
+
|
188 |
+
# some parameters I cooked up that work reasonably well
|
189 |
+
|
190 |
+
epochs = 1
|
191 |
+
learning_rate = 5e-4
|
192 |
+
warmup_steps = 1e2
|
193 |
+
epsilon = 1e-8
|
194 |
+
|
195 |
+
# this produces sample output every 100 steps
|
196 |
+
sample_every = 1000
|
197 |
+
|
198 |
+
# Note: AdamW is a class from the huggingface library (as opposed to pytorch)
|
199 |
+
optimizer = AdamW(model.parameters(),
|
200 |
+
lr = learning_rate,
|
201 |
+
eps = epsilon
|
202 |
+
)
|
203 |
+
|
204 |
+
# Total number of training steps is [number of batches] x [number of epochs].
|
205 |
+
# (Note that this is not the same as the number of training samples).
|
206 |
+
total_steps = len(train_dataloader) * epochs
|
207 |
+
|
208 |
+
# Create the learning rate scheduler.
|
209 |
+
# This changes the learning rate as the training loop progresses
|
210 |
+
scheduler = get_linear_schedule_with_warmup(optimizer,
|
211 |
+
num_warmup_steps = warmup_steps,
|
212 |
+
num_training_steps = total_steps)
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
def format_time(elapsed):
|
218 |
+
return str(datetime.timedelta(seconds=int(round((elapsed)))))
|
219 |
+
|
220 |
+
output_dir = '/media/data_dump/Ritwik/ggpt/model_save/'
|
221 |
+
|
222 |
+
# Create output directory if needed
|
223 |
+
if not os.path.exists(output_dir):
|
224 |
+
os.makedirs(output_dir)
|
225 |
+
|
226 |
+
total_t0 = time.time()
|
227 |
+
|
228 |
+
training_stats = []
|
229 |
+
|
230 |
+
last_epoch, last_step = -1, -1
|
231 |
+
try:
|
232 |
+
file = open(out_path+'model_save/checkpoint_state_pretraining.txt','r')
|
233 |
+
content = [x.split(':') for x in file.read().split('|')]
|
234 |
+
file.close()
|
235 |
+
except:
|
236 |
+
content = []
|
237 |
+
|
238 |
+
if len(content) == 2:
|
239 |
+
last_epoch = int(content[1][1])
|
240 |
+
last_step = int(content[0][1])
|
241 |
+
|
242 |
+
checkpoint = torch.load(out_path+'model_save/model_checkpoint_pretraining.pth.tar')
|
243 |
+
print(model.load_state_dict(checkpoint['state_dict']))
|
244 |
+
tokenizer = torch.load(out_path+'model_save/tokenizer_checkpoint_pretraining.pth.tar')
|
245 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
246 |
+
# else:
|
247 |
+
# print(content)
|
248 |
+
# input('wait')
|
249 |
+
|
250 |
+
|
251 |
+
for epoch_i in range(0, epochs):
|
252 |
+
|
253 |
+
# ========================================
|
254 |
+
# Training
|
255 |
+
# ========================================
|
256 |
+
|
257 |
+
print("")
|
258 |
+
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))
|
259 |
+
print('Training...')
|
260 |
+
|
261 |
+
if last_epoch!=-1:
|
262 |
+
if epoch_i < last_epoch:
|
263 |
+
continue
|
264 |
+
|
265 |
+
t0 = time.time()
|
266 |
+
|
267 |
+
total_train_loss = 0
|
268 |
+
|
269 |
+
model.train()
|
270 |
+
|
271 |
+
for step, batch in enumerate(train_dataloader):
|
272 |
+
|
273 |
+
if last_step != -1:
|
274 |
+
if step <= last_step:
|
275 |
+
continue
|
276 |
+
|
277 |
+
b_input_ids = batch[0].to(device)
|
278 |
+
b_labels = batch[0].to(device)
|
279 |
+
b_masks = batch[1].to(device)
|
280 |
+
|
281 |
+
model.zero_grad()
|
282 |
+
|
283 |
+
outputs = model( b_input_ids,
|
284 |
+
labels=b_labels,
|
285 |
+
attention_mask = b_masks,
|
286 |
+
token_type_ids=None
|
287 |
+
)
|
288 |
+
|
289 |
+
loss = outputs[0]
|
290 |
+
|
291 |
+
batch_loss = loss.item()
|
292 |
+
total_train_loss += batch_loss
|
293 |
+
|
294 |
+
# Get sample every x batches. Ignoring the first step.
|
295 |
+
if step % sample_every == 0 and not step == 0:
|
296 |
+
|
297 |
+
elapsed = format_time(time.time() - t0)
|
298 |
+
print(' Batch {:>5,} of {:>5,}. Loss: {:>5,}. Elapsed: {:}.'.format(step, len(train_dataloader), batch_loss, elapsed))
|
299 |
+
|
300 |
+
model.eval()
|
301 |
+
|
302 |
+
sample_outputs = model.generate(
|
303 |
+
bos_token_id=random.randint(1,30000),
|
304 |
+
do_sample=True,
|
305 |
+
top_k=50,
|
306 |
+
max_length = 200,
|
307 |
+
top_p=0.95,
|
308 |
+
num_return_sequences=1
|
309 |
+
)
|
310 |
+
for i, sample_output in enumerate(sample_outputs):
|
311 |
+
print("{}: {}".format(i, tokenizer.decode(sample_output, skip_special_tokens=True)))
|
312 |
+
|
313 |
+
model.train()
|
314 |
+
|
315 |
+
try:
|
316 |
+
torch.save({'state_dict': model.state_dict()}, out_path+'model_save/model_checkpoint_pretraining.pth.tar')
|
317 |
+
torch.save(tokenizer, out_path+'model_save/tokenizer_checkpoint_pretraining.pth.tar')
|
318 |
+
file = open(out_path+'model_save/checkpoint_state_pretraining.txt','w')
|
319 |
+
file.write('step:'+str(step)+'|epoch:'+str(epoch_i))
|
320 |
+
file.close()
|
321 |
+
except:
|
322 |
+
torch.save({'state_dict': model.state_dict()}, out_path+'model_save/model_checkpoint_pretraining.pth.tar')
|
323 |
+
torch.save(tokenizer, out_path+'model_save/tokenizer_checkpoint_pretraining.pth.tar')
|
324 |
+
file = open(out_path+'model_save/checkpoint_state_pretraining.txt','w')
|
325 |
+
file.write('step:'+str(step)+'|epoch:'+str(epoch_i))
|
326 |
+
file.close()
|
327 |
+
|
328 |
+
loss.backward()
|
329 |
+
|
330 |
+
optimizer.step()
|
331 |
+
|
332 |
+
scheduler.step()
|
333 |
+
|
334 |
+
last_epoch, last_step = -1, -1
|
335 |
+
# Calculate the average loss over all of the batches.
|
336 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
337 |
+
|
338 |
+
# Measure how long this epoch took.
|
339 |
+
training_time = format_time(time.time() - t0)
|
340 |
+
|
341 |
+
print("")
|
342 |
+
print(" Average training loss: {0:.2f}".format(avg_train_loss))
|
343 |
+
print(" Training epoch took: {:}".format(training_time))
|
344 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
345 |
+
|
346 |
+
# ========================================
|
347 |
+
# Validation
|
348 |
+
# ========================================
|
349 |
+
|
350 |
+
print("")
|
351 |
+
print("Running Validation...")
|
352 |
+
|
353 |
+
t0 = time.time()
|
354 |
+
|
355 |
+
model.eval()
|
356 |
+
|
357 |
+
total_eval_loss = 0
|
358 |
+
nb_eval_steps = 0
|
359 |
+
|
360 |
+
# Evaluate data for one epoch
|
361 |
+
for batch in validation_dataloader:
|
362 |
+
|
363 |
+
b_input_ids = batch[0].to(device)
|
364 |
+
b_labels = batch[0].to(device)
|
365 |
+
b_masks = batch[1].to(device)
|
366 |
+
|
367 |
+
with torch.no_grad():
|
368 |
+
|
369 |
+
outputs = model(b_input_ids,
|
370 |
+
# token_type_ids=None,
|
371 |
+
attention_mask = b_masks,
|
372 |
+
labels=b_labels)
|
373 |
+
|
374 |
+
loss = outputs[0]
|
375 |
+
|
376 |
+
batch_loss = loss.item()
|
377 |
+
total_eval_loss += batch_loss
|
378 |
+
|
379 |
+
avg_val_loss = total_eval_loss / len(validation_dataloader)
|
380 |
+
|
381 |
+
validation_time = format_time(time.time() - t0)
|
382 |
+
|
383 |
+
print(" Validation Loss: {0:.2f}".format(avg_val_loss))
|
384 |
+
print(" Validation took: {:}".format(validation_time))
|
385 |
+
|
386 |
+
# Record all statistics from this epoch.
|
387 |
+
training_stats.append(
|
388 |
+
{
|
389 |
+
'epoch': epoch_i + 1,
|
390 |
+
'Training Loss': avg_train_loss,
|
391 |
+
'Valid. Loss': avg_val_loss,
|
392 |
+
'Training Time': training_time,
|
393 |
+
'Validation Time': validation_time
|
394 |
+
}
|
395 |
+
)
|
396 |
+
|
397 |
+
print("")
|
398 |
+
print("Training complete!")
|
399 |
+
print("Total training took {:} (h:mm:ss)".format(format_time(time.time()-total_t0)))
|
400 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
401 |
+
|
402 |
+
try:
|
403 |
+
# Display floats with two decimal places.
|
404 |
+
pd.set_option('precision', 2)
|
405 |
+
|
406 |
+
# Create a DataFrame from our training statistics.
|
407 |
+
df_stats = pd.DataFrame(data=training_stats)
|
408 |
+
|
409 |
+
# Use the 'epoch' as the row index.
|
410 |
+
df_stats = df_stats.set_index('epoch')
|
411 |
+
|
412 |
+
# A hack to force the column headers to wrap.
|
413 |
+
# df = df.style.set_table_styles([dict(selector="th",props=[('max-width', '70px')])])
|
414 |
+
|
415 |
+
# Display the table.
|
416 |
+
print(df_stats)
|
417 |
+
|
418 |
+
# Use plot styling from seaborn.
|
419 |
+
sns.set(style='darkgrid')
|
420 |
+
|
421 |
+
# Increase the plot size and font size.
|
422 |
+
sns.set(font_scale=1.5)
|
423 |
+
plt.rcParams["figure.figsize"] = (12,6)
|
424 |
+
|
425 |
+
# Plot the learning curve.
|
426 |
+
plt.plot(df_stats['Training Loss'], 'b-o', label="Training")
|
427 |
+
plt.plot(df_stats['Valid. Loss'], 'g-o', label="Validation")
|
428 |
+
|
429 |
+
# Label the plot.
|
430 |
+
plt.title("Training & Validation Loss")
|
431 |
+
plt.xlabel("Epoch")
|
432 |
+
plt.ylabel("Loss")
|
433 |
+
plt.legend()
|
434 |
+
plt.xticks([1, 2, 3, 4])
|
435 |
+
|
436 |
+
# plt.show()
|
437 |
+
plt.savefig(out_path+"training.png")
|
438 |
+
|
439 |
+
# Get all of the model's parameters as a list of tuples.
|
440 |
+
params = list(model.named_parameters())
|
441 |
+
|
442 |
+
print('The GPT-2 model has {:} different named parameters.\n'.format(len(params)))
|
443 |
+
|
444 |
+
print('==== Embedding Layer ====\n')
|
445 |
+
|
446 |
+
for p in params[0:2]:
|
447 |
+
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
|
448 |
+
|
449 |
+
print('\n==== First Transformer ====\n')
|
450 |
+
|
451 |
+
for p in params[2:14]:
|
452 |
+
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
|
453 |
+
|
454 |
+
print('\n==== Output Layer ====\n')
|
455 |
+
|
456 |
+
for p in params[-2:]:
|
457 |
+
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
|
458 |
+
|
459 |
+
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
|
460 |
+
|
461 |
+
print("Saving model to %s" % output_dir)
|
462 |
+
|
463 |
+
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
|
464 |
+
# They can then be reloaded using `from_pretrained()`
|
465 |
+
# model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
|
466 |
+
# way 1
|
467 |
+
model.save_pretrained(output_dir)
|
468 |
+
tokenizer.save_pretrained(output_dir)
|
469 |
+
|
470 |
+
# way 2
|
471 |
+
# torch.save({'state_dict': model.state_dict()}, out_path+'model_save/final_checkpoint.pth.tar')
|
472 |
+
|
473 |
+
except Exception as e:
|
474 |
+
print(e)
|
475 |
+
print('Waiting for 10 seconds')
|
476 |
+
time.sleep(10)
|
477 |
+
|
478 |
+
# ========================= Gandhi Data =======================
|
479 |
+
|
480 |
+
sfile = 'all_tc_sents_768.txt'
|
481 |
+
print(sfile)
|
482 |
+
file = open(sfile,'r')
|
483 |
+
lines = file.readlines()
|
484 |
+
file.close()
|
485 |
+
lines = [[x.strip()] for x in lines]
|
486 |
+
|
487 |
+
df = pd.DataFrame(lines, columns=['bio_main'])
|
488 |
+
|
489 |
+
print('Dataframe created')
|
490 |
+
df.dropna(inplace=True) #remove NA values
|
491 |
+
bios = df.bio_main.copy()
|
492 |
+
|
493 |
+
doc_lengths = []
|
494 |
+
for bio in bios:
|
495 |
+
# get rough token count distribution
|
496 |
+
tokens = nltk.word_tokenize(bio)
|
497 |
+
doc_lengths.append(len(tokens))
|
498 |
+
doc_lengths = np.array(doc_lengths)
|
499 |
+
a = sns.distplot(doc_lengths)
|
500 |
+
a.get_figure().savefig(out_path+"out.png")
|
501 |
+
print('len(doc_lengths[doc_lengths > 768])/len(doc_lengths)',len(doc_lengths[doc_lengths > 768])/len(doc_lengths))
|
502 |
+
print('np.average(doc_lengths)',np.average(doc_lengths))
|
503 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
504 |
+
|
505 |
+
|
506 |
+
print("The max model length is {} for this model, although the actual embedding size for GPT small is 768".format(tokenizer.model_max_length))
|
507 |
+
print("The beginning of sequence token {} token has the id {}".format(tokenizer.convert_ids_to_tokens(tokenizer.bos_token_id), tokenizer.bos_token_id))
|
508 |
+
print("The end of sequence token {} has the id {}".format(tokenizer.convert_ids_to_tokens(tokenizer.eos_token_id), tokenizer.eos_token_id))
|
509 |
+
print("The padding token {} has the id {}".format(tokenizer.convert_ids_to_tokens(tokenizer.pad_token_id), tokenizer.pad_token_id))
|
510 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
511 |
+
|
512 |
+
batch_size = 4
|
513 |
+
|
514 |
+
class GPT2Dataset(Dataset):
|
515 |
+
|
516 |
+
def __init__(self, txt_list, tokenizer, gpt2_type="gpt2", max_length=768):
|
517 |
+
|
518 |
+
self.tokenizer = tokenizer
|
519 |
+
self.input_ids = []
|
520 |
+
self.attn_masks = []
|
521 |
+
|
522 |
+
for txt in txt_list:
|
523 |
+
|
524 |
+
encodings_dict = tokenizer('<|startoftext|>'+ txt + '<|endoftext|>', truncation=True, max_length=max_length, padding="max_length")
|
525 |
+
|
526 |
+
self.input_ids.append(torch.tensor(encodings_dict['input_ids']))
|
527 |
+
self.attn_masks.append(torch.tensor(encodings_dict['attention_mask']))
|
528 |
+
|
529 |
+
def __len__(self):
|
530 |
+
return len(self.input_ids)
|
531 |
+
|
532 |
+
def __getitem__(self, idx):
|
533 |
+
return self.input_ids[idx], self.attn_masks[idx]
|
534 |
+
|
535 |
+
dataset = GPT2Dataset(bios, tokenizer, max_length=768)
|
536 |
+
|
537 |
+
# Split into training and validation sets
|
538 |
+
train_size = int(0.9 * len(dataset))
|
539 |
+
val_size = len(dataset) - train_size
|
540 |
+
|
541 |
+
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
542 |
+
|
543 |
+
print('{:>5,} training samples'.format(train_size))
|
544 |
+
print('{:>5,} validation samples'.format(val_size))
|
545 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
546 |
+
|
547 |
+
# Create the DataLoaders for our training and validation datasets.
|
548 |
+
# We'll take training samples in random order.
|
549 |
+
train_dataloader = DataLoader(
|
550 |
+
train_dataset, # The training samples.
|
551 |
+
sampler = RandomSampler(train_dataset), # Select batches randomly
|
552 |
+
batch_size = batch_size # Trains with this batch size.
|
553 |
+
)
|
554 |
+
|
555 |
+
# For validation the order doesn't matter, so we'll just read them sequentially.
|
556 |
+
validation_dataloader = DataLoader(
|
557 |
+
val_dataset, # The validation samples.
|
558 |
+
sampler = SequentialSampler(val_dataset), # Pull out batches sequentially.
|
559 |
+
batch_size = batch_size # Evaluate with this batch size.
|
560 |
+
)
|
561 |
+
|
562 |
+
# Turning this off
|
563 |
+
'''
|
564 |
+
# I'm not really doing anything with the config buheret
|
565 |
+
configuration = GPT2Config.from_pretrained('gpt2', output_hidden_states=False)
|
566 |
+
|
567 |
+
# instantiate the model
|
568 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2", config=configuration)
|
569 |
+
|
570 |
+
# this step is necessary because I've added some tokens (bos_token, etc) to the embeddings
|
571 |
+
# otherwise the tokenizer and model tensors won't match up
|
572 |
+
model.resize_token_embeddings(len(tokenizer))
|
573 |
+
|
574 |
+
# Tell pytorch to run this model on the GPU.
|
575 |
+
device = torch.device("cuda")
|
576 |
+
|
577 |
+
model = model.to(device)
|
578 |
+
'''
|
579 |
+
|
580 |
+
print('Model loaded to GPU')
|
581 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
582 |
+
|
583 |
+
# checkpoint = torch.load(out_path+'model_save_768/final_checkpoint.pth.tar')
|
584 |
+
# print(model.load_state_dict(checkpoint['state_dict']))
|
585 |
+
# del checkpoint
|
586 |
+
# tokenizer = torch.load(out_path+'model_save_768/tokenizer_checkpoint.pth.tar') #.from_pretrained('/media/data_dump/Ritwik/ggpt/model_save_768/')
|
587 |
+
|
588 |
+
# some parameters I cooked up that work reasonably well
|
589 |
+
|
590 |
+
epochs = 3
|
591 |
+
learning_rate = 5e-4
|
592 |
+
warmup_steps = 1e2
|
593 |
+
epsilon = 1e-8
|
594 |
+
|
595 |
+
# this produces sample output every 100 steps
|
596 |
+
sample_every = 1000
|
597 |
+
|
598 |
+
# Note: AdamW is a class from the huggingface library (as opposed to pytorch)
|
599 |
+
optimizer = AdamW(model.parameters(),
|
600 |
+
lr = learning_rate,
|
601 |
+
eps = epsilon
|
602 |
+
)
|
603 |
+
|
604 |
+
# Total number of training steps is [number of batches] x [number of epochs].
|
605 |
+
# (Note that this is not the same as the number of training samples).
|
606 |
+
total_steps = len(train_dataloader) * epochs
|
607 |
+
|
608 |
+
# Create the learning rate scheduler.
|
609 |
+
# This changes the learning rate as the training loop progresses
|
610 |
+
scheduler = get_linear_schedule_with_warmup(optimizer,
|
611 |
+
num_warmup_steps = warmup_steps,
|
612 |
+
num_training_steps = total_steps)
|
613 |
+
|
614 |
+
|
615 |
+
|
616 |
+
|
617 |
+
def format_time(elapsed):
|
618 |
+
return str(datetime.timedelta(seconds=int(round((elapsed)))))
|
619 |
+
|
620 |
+
output_dir = '/media/data_dump/Ritwik/ggpt/model_save/'
|
621 |
+
|
622 |
+
# Create output directory if needed
|
623 |
+
if not os.path.exists(output_dir):
|
624 |
+
os.makedirs(output_dir)
|
625 |
+
|
626 |
+
total_t0 = time.time()
|
627 |
+
|
628 |
+
training_stats = []
|
629 |
+
|
630 |
+
last_epoch, last_step = -1, -1
|
631 |
+
try:
|
632 |
+
file = open(out_path+'model_save/checkpoint_state.txt','r')
|
633 |
+
content = [x.split(':') for x in file.read().split('|')]
|
634 |
+
file.close()
|
635 |
+
except:
|
636 |
+
content = []
|
637 |
+
|
638 |
+
if len(content) == 2:
|
639 |
+
last_epoch = int(content[1][1])
|
640 |
+
last_step = int(content[0][1])
|
641 |
+
|
642 |
+
checkpoint = torch.load(out_path+'model_save/model_checkpoint.pth.tar')
|
643 |
+
print(model.load_state_dict(checkpoint['state_dict']))
|
644 |
+
tokenizer = torch.load(out_path+'model_save/tokenizer_checkpoint.pth.tar')
|
645 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
646 |
+
# else:
|
647 |
+
# print(content)
|
648 |
+
# input('wait')
|
649 |
+
|
650 |
+
|
651 |
+
for epoch_i in range(0, epochs):
|
652 |
+
|
653 |
+
# ========================================
|
654 |
+
# Training
|
655 |
+
# ========================================
|
656 |
+
|
657 |
+
print("")
|
658 |
+
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))
|
659 |
+
print('Training...')
|
660 |
+
|
661 |
+
if last_epoch!=-1:
|
662 |
+
if epoch_i < last_epoch:
|
663 |
+
continue
|
664 |
+
|
665 |
+
t0 = time.time()
|
666 |
+
|
667 |
+
total_train_loss = 0
|
668 |
+
|
669 |
+
model.train()
|
670 |
+
|
671 |
+
for step, batch in enumerate(train_dataloader):
|
672 |
+
|
673 |
+
if last_step != -1:
|
674 |
+
if step <= last_step:
|
675 |
+
continue
|
676 |
+
|
677 |
+
b_input_ids = batch[0].to(device)
|
678 |
+
b_labels = batch[0].to(device)
|
679 |
+
b_masks = batch[1].to(device)
|
680 |
+
|
681 |
+
model.zero_grad()
|
682 |
+
|
683 |
+
outputs = model( b_input_ids,
|
684 |
+
labels=b_labels,
|
685 |
+
attention_mask = b_masks,
|
686 |
+
token_type_ids=None
|
687 |
+
)
|
688 |
+
|
689 |
+
loss = outputs[0]
|
690 |
+
|
691 |
+
batch_loss = loss.item()
|
692 |
+
total_train_loss += batch_loss
|
693 |
+
|
694 |
+
# Get sample every x batches. Ignoring the first step.
|
695 |
+
if step % sample_every == 0 and not step == 0:
|
696 |
+
|
697 |
+
elapsed = format_time(time.time() - t0)
|
698 |
+
print(' Batch {:>5,} of {:>5,}. Loss: {:>5,}. Elapsed: {:}.'.format(step, len(train_dataloader), batch_loss, elapsed))
|
699 |
+
|
700 |
+
model.eval()
|
701 |
+
|
702 |
+
sample_outputs = model.generate(
|
703 |
+
bos_token_id=random.randint(1,30000),
|
704 |
+
do_sample=True,
|
705 |
+
top_k=50,
|
706 |
+
max_length = 200,
|
707 |
+
top_p=0.95,
|
708 |
+
num_return_sequences=1
|
709 |
+
)
|
710 |
+
for i, sample_output in enumerate(sample_outputs):
|
711 |
+
print("{}: {}".format(i, tokenizer.decode(sample_output, skip_special_tokens=True)))
|
712 |
+
|
713 |
+
model.train()
|
714 |
+
|
715 |
+
torch.save({'state_dict': model.state_dict()}, out_path+'model_save/model_checkpoint.pth.tar')
|
716 |
+
torch.save(tokenizer, out_path+'model_save/tokenizer_checkpoint.pth.tar')
|
717 |
+
file = open(out_path+'model_save/checkpoint_state.txt','w')
|
718 |
+
file.write('step:'+str(step)+'|epoch:'+str(epoch_i))
|
719 |
+
file.close()
|
720 |
+
|
721 |
+
loss.backward()
|
722 |
+
|
723 |
+
optimizer.step()
|
724 |
+
|
725 |
+
scheduler.step()
|
726 |
+
|
727 |
+
last_epoch, last_step = -1, -1
|
728 |
+
# Calculate the average loss over all of the batches.
|
729 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
730 |
+
|
731 |
+
# Measure how long this epoch took.
|
732 |
+
training_time = format_time(time.time() - t0)
|
733 |
+
|
734 |
+
print("")
|
735 |
+
print(" Average training loss: {0:.2f}".format(avg_train_loss))
|
736 |
+
print(" Training epoch took: {:}".format(training_time))
|
737 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
738 |
+
|
739 |
+
# ========================================
|
740 |
+
# Validation
|
741 |
+
# ========================================
|
742 |
+
|
743 |
+
print("")
|
744 |
+
print("Running Validation...")
|
745 |
+
|
746 |
+
t0 = time.time()
|
747 |
+
|
748 |
+
model.eval()
|
749 |
+
|
750 |
+
total_eval_loss = 0
|
751 |
+
nb_eval_steps = 0
|
752 |
+
|
753 |
+
# Evaluate data for one epoch
|
754 |
+
for batch in validation_dataloader:
|
755 |
+
|
756 |
+
b_input_ids = batch[0].to(device)
|
757 |
+
b_labels = batch[0].to(device)
|
758 |
+
b_masks = batch[1].to(device)
|
759 |
+
|
760 |
+
with torch.no_grad():
|
761 |
+
|
762 |
+
outputs = model(b_input_ids,
|
763 |
+
# token_type_ids=None,
|
764 |
+
attention_mask = b_masks,
|
765 |
+
labels=b_labels)
|
766 |
+
|
767 |
+
loss = outputs[0]
|
768 |
+
|
769 |
+
batch_loss = loss.item()
|
770 |
+
total_eval_loss += batch_loss
|
771 |
+
|
772 |
+
avg_val_loss = total_eval_loss / len(validation_dataloader)
|
773 |
+
|
774 |
+
validation_time = format_time(time.time() - t0)
|
775 |
+
|
776 |
+
print(" Validation Loss: {0:.2f}".format(avg_val_loss))
|
777 |
+
print(" Validation took: {:}".format(validation_time))
|
778 |
+
|
779 |
+
# Record all statistics from this epoch.
|
780 |
+
training_stats.append(
|
781 |
+
{
|
782 |
+
'epoch': epoch_i + 1,
|
783 |
+
'Training Loss': avg_train_loss,
|
784 |
+
'Valid. Loss': avg_val_loss,
|
785 |
+
'Training Time': training_time,
|
786 |
+
'Validation Time': validation_time
|
787 |
+
}
|
788 |
+
)
|
789 |
+
|
790 |
+
print("")
|
791 |
+
print("Training complete!")
|
792 |
+
print("Total training took {:} (h:mm:ss)".format(format_time(time.time()-total_t0)))
|
793 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
794 |
+
|
795 |
+
# Display floats with two decimal places.
|
796 |
+
pd.set_option('precision', 2)
|
797 |
+
|
798 |
+
# Create a DataFrame from our training statistics.
|
799 |
+
df_stats = pd.DataFrame(data=training_stats)
|
800 |
+
|
801 |
+
# Use the 'epoch' as the row index.
|
802 |
+
df_stats = df_stats.set_index('epoch')
|
803 |
+
|
804 |
+
# A hack to force the column headers to wrap.
|
805 |
+
# df = df.style.set_table_styles([dict(selector="th",props=[('max-width', '70px')])])
|
806 |
+
|
807 |
+
# Display the table.
|
808 |
+
print(df_stats)
|
809 |
+
|
810 |
+
# Use plot styling from seaborn.
|
811 |
+
sns.set(style='darkgrid')
|
812 |
+
|
813 |
+
# Increase the plot size and font size.
|
814 |
+
sns.set(font_scale=1.5)
|
815 |
+
plt.rcParams["figure.figsize"] = (12,6)
|
816 |
+
|
817 |
+
# Plot the learning curve.
|
818 |
+
plt.plot(df_stats['Training Loss'], 'b-o', label="Training")
|
819 |
+
plt.plot(df_stats['Valid. Loss'], 'g-o', label="Validation")
|
820 |
+
|
821 |
+
# Label the plot.
|
822 |
+
plt.title("Training & Validation Loss")
|
823 |
+
plt.xlabel("Epoch")
|
824 |
+
plt.ylabel("Loss")
|
825 |
+
plt.legend()
|
826 |
+
plt.xticks([1, 2, 3, 4])
|
827 |
+
|
828 |
+
# plt.show()
|
829 |
+
plt.savefig(out_path+"training.png")
|
830 |
+
|
831 |
+
# Get all of the model's parameters as a list of tuples.
|
832 |
+
params = list(model.named_parameters())
|
833 |
+
|
834 |
+
print('The GPT-2 model has {:} different named parameters.\n'.format(len(params)))
|
835 |
+
|
836 |
+
print('==== Embedding Layer ====\n')
|
837 |
+
|
838 |
+
for p in params[0:2]:
|
839 |
+
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
|
840 |
+
|
841 |
+
print('\n==== First Transformer ====\n')
|
842 |
+
|
843 |
+
for p in params[2:14]:
|
844 |
+
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
|
845 |
+
|
846 |
+
print('\n==== Output Layer ====\n')
|
847 |
+
|
848 |
+
for p in params[-2:]:
|
849 |
+
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
|
850 |
+
|
851 |
+
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
|
852 |
+
|
853 |
+
print("Saving model to %s" % output_dir)
|
854 |
+
|
855 |
+
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
|
856 |
+
# They can then be reloaded using `from_pretrained()`
|
857 |
+
# model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
|
858 |
+
# way 1
|
859 |
+
model.save_pretrained(output_dir)
|
860 |
+
tokenizer.save_pretrained(output_dir)
|
861 |
+
|
862 |
+
# way 2
|
863 |
+
# torch.save({'state_dict': model.state_dict()}, out_path+'model_save/final_checkpoint.pth.tar')
|
864 |
+
|
865 |
+
|
866 |
+
# Loading
|
867 |
+
|
868 |
+
# way 1
|
869 |
+
# model = model.from_pretrained(output_dir).to(device)
|
870 |
+
# tokenizer = tokenizer.from_pretrained(output_dir)
|
871 |
+
|
872 |
+
# way 2
|
873 |
+
# checkpoint = torch.load(out_path+'model_save/final_checkpoint.pth.tar')
|
874 |
+
# print(model.load_state_dict(checkpoint['state_dict']))
|
875 |
+
# del checkpoint
|
876 |
+
# tokenizer = torch.load(out_path+'model_save/tokenizer_checkpoint.pth.tar')
|
877 |
+
|
878 |
+
|
879 |
+
print('Model and tokenizer loaded!')
|
880 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
881 |
+
|
882 |
+
model.eval()
|
883 |
+
|
884 |
+
prompt = "<|startoftext|> I wish to say that"
|
885 |
+
|
886 |
+
generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0)
|
887 |
+
generated = generated.to(device)
|
888 |
+
|
889 |
+
print(generated)
|
890 |
+
|
891 |
+
sample_outputs = model.generate(
|
892 |
+
generated,
|
893 |
+
# bos_token_id=random.randint(1,30000),
|
894 |
+
do_sample=True,
|
895 |
+
top_k=50,
|
896 |
+
max_length = 500,
|
897 |
+
top_p=0.95,
|
898 |
+
num_return_sequences=3
|
899 |
+
)
|
900 |
+
|
901 |
+
for i, sample_output in enumerate(sample_outputs):
|
902 |
+
print("{}: {}\n\n".format(i, tokenizer.decode(sample_output, skip_special_tokens=True)))
|
903 |
+
|
904 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
code/gpt-run.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import datetime
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
import seaborn as sns
|
7 |
+
import numpy as np
|
8 |
+
import random
|
9 |
+
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch.utils.data import Dataset, DataLoader, random_split, RandomSampler, SequentialSampler
|
14 |
+
|
15 |
+
|
16 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2Config, GPT2LMHeadModel
|
17 |
+
from transformers import AdamW, get_linear_schedule_with_warmup
|
18 |
+
|
19 |
+
import sys
|
20 |
+
|
21 |
+
import pytz
|
22 |
+
IST = pytz.timezone('Asia/Kolkata')
|
23 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
24 |
+
|
25 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2', bos_token='<|startoftext|>', eos_token='<|endoftext|>', pad_token='<|pad|>') #gpt2-medium
|
26 |
+
|
27 |
+
# I'm not really doing anything with the config buheret
|
28 |
+
configuration = GPT2Config.from_pretrained('gpt2', output_hidden_states=False)
|
29 |
+
|
30 |
+
# instantiate the model
|
31 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2", config=configuration)
|
32 |
+
|
33 |
+
# this step is necessary because I've added some tokens (bos_token, etc) to the embeddings
|
34 |
+
# otherwise the tokenizer and model tensors won't match up
|
35 |
+
model.resize_token_embeddings(len(tokenizer))
|
36 |
+
|
37 |
+
# Tell pytorch to run this model on the GPU.
|
38 |
+
device = torch.device("cuda")
|
39 |
+
|
40 |
+
model = model.to(device)
|
41 |
+
|
42 |
+
print('Model loaded to GPU')
|
43 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
44 |
+
|
45 |
+
output_dir = '/media/data_dump/Ritwik/ggpt/model_save/pytorch_save_files/'
|
46 |
+
|
47 |
+
print('Loading fine-tuned weights')
|
48 |
+
model = model.from_pretrained(output_dir).to(device)
|
49 |
+
tokenizer = tokenizer.from_pretrained(output_dir)
|
50 |
+
|
51 |
+
print('Model and tokenizer loaded!')
|
52 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
53 |
+
|
54 |
+
model.eval()
|
55 |
+
|
56 |
+
# prompt_list = ['<|startoftext|> Regarding Kashmir I am very confident to say that','<|startoftext|> I wanted to save bhagat singh but','<|startoftext|> I wanted to save bhagat singh but fortunately','<|startoftext|> I wanted to save bhagat singh but unfortunately','<|startoftext|> Reporter: What is your biggest fear? Gandhi:','<|startoftext|> Question) What is your biggest fear?','<|startoftext|> Regarding Muslims and Islam I strongly believe that','<|startoftext|> I wish to say that','<|startoftext|> I chose Nehru over Patel for Prime Minister because','<|startoftext|> During my experiments with truth I observed that','<|startoftext|> My opinion on the negroes of Africa is that']
|
57 |
+
prompt_list = ['<|startoftext|> Regarding Kashmir I am very confident to say that']
|
58 |
+
|
59 |
+
for prompt in prompt_list:
|
60 |
+
|
61 |
+
# prompt = "<|startoftext|> Regarding Kashmir I am very confident to say that"
|
62 |
+
|
63 |
+
print(prompt)
|
64 |
+
|
65 |
+
generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0)
|
66 |
+
generated = generated.to(device)
|
67 |
+
|
68 |
+
print(generated)
|
69 |
+
|
70 |
+
sample_outputs = model.generate(
|
71 |
+
generated,
|
72 |
+
# bos_token_id=random.randint(1,30000),
|
73 |
+
do_sample=True,
|
74 |
+
top_k=50,
|
75 |
+
max_length = 500,
|
76 |
+
top_p=0.95,
|
77 |
+
num_return_sequences=3
|
78 |
+
)
|
79 |
+
|
80 |
+
for i, sample_output in enumerate(sample_outputs):
|
81 |
+
print("{}: {}\n\n".format(i, tokenizer.decode(sample_output, skip_special_tokens=True)))
|
82 |
+
|
83 |
+
print(datetime.datetime.now(IST).strftime("%c"))
|
84 |
+
print('\n')
|
85 |
+
|
code/myocr.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
this file is responsible for scraping the gandhi text
|
3 |
+
'''
|
4 |
+
|
5 |
+
import pytesseract
|
6 |
+
from pytesseract import Output
|
7 |
+
from PIL import Image
|
8 |
+
import pandas as pd
|
9 |
+
from tqdm import tqdm
|
10 |
+
import os.path
|
11 |
+
|
12 |
+
import fitz
|
13 |
+
|
14 |
+
import subprocess
|
15 |
+
|
16 |
+
def do_indent(df):
|
17 |
+
text = ""
|
18 |
+
# clean up blanks
|
19 |
+
df1 = df[(df.conf!='-1')&(df.text!=' ')&(df.text!='')]
|
20 |
+
# sort blocks vertically
|
21 |
+
sorted_blocks = df1.groupby('block_num').first().sort_values('top').index.tolist()
|
22 |
+
for block in sorted_blocks:
|
23 |
+
curr = df1[df1['block_num']==block]
|
24 |
+
sel = curr[curr.text.str.len()>3]
|
25 |
+
char_w = (sel.width/sel.text.str.len()).mean()
|
26 |
+
prev_par, prev_line, prev_left = 0, 0, 0
|
27 |
+
# text = ''
|
28 |
+
for ix, ln in curr.iterrows():
|
29 |
+
# add new line when necessary
|
30 |
+
if prev_par != ln['par_num']:
|
31 |
+
text += '\n'
|
32 |
+
prev_par = ln['par_num']
|
33 |
+
prev_line = ln['line_num']
|
34 |
+
prev_left = 0
|
35 |
+
elif prev_line != ln['line_num']:
|
36 |
+
text += '\n'
|
37 |
+
prev_line = ln['line_num']
|
38 |
+
prev_left = 0
|
39 |
+
|
40 |
+
added = 0 # num of spaces that should be added
|
41 |
+
if ln['left']/char_w > prev_left + 1:
|
42 |
+
added = int((ln['left'])/char_w) - prev_left
|
43 |
+
text += ' ' * added
|
44 |
+
text += ln['text'] + ' '
|
45 |
+
prev_left += len(ln['text']) + added + 1
|
46 |
+
text += '\n'
|
47 |
+
return text
|
48 |
+
|
49 |
+
text_file_path = 'text_files/'
|
50 |
+
start_page = 0
|
51 |
+
|
52 |
+
for h in range(1,99):
|
53 |
+
tfile = text_file_path+str(h)+'.txt'
|
54 |
+
url = "http://www.gandhiashramsevagram.org/gandhi-literature/mahatma-gandhi-collected-works-volume-"+str(h)+".pdf"
|
55 |
+
bashCommand = "wget "+url +" -O file.pdf"
|
56 |
+
process = subprocess.Popen(bashCommand.split())
|
57 |
+
output, error = process.communicate()
|
58 |
+
|
59 |
+
pdffile = "file.pdf"
|
60 |
+
doc = fitz.open(pdffile)
|
61 |
+
# https://stackoverflow.com/questions/46184239/extract-a-page-from-a-pdf-as-a-jpeg
|
62 |
+
file_text = ""
|
63 |
+
|
64 |
+
for i in tqdm(range(len(doc)), total=len(doc), desc=str(h)+'/98'):
|
65 |
+
if i < start_page:
|
66 |
+
continue
|
67 |
+
page = doc.load_page(i) # number of page
|
68 |
+
mat = fitz.Matrix(5, 5) # zoom factor
|
69 |
+
pix = page.get_pixmap(matrix=mat)
|
70 |
+
output = "outfile.png"
|
71 |
+
pix.save(output)
|
72 |
+
custom_config = r'-c preserve_interword_spaces=1 --oem 1 --psm 1 -l eng+ita'
|
73 |
+
d = pytesseract.image_to_data(Image.open(output), config=custom_config, output_type=Output.DICT)
|
74 |
+
df = pd.DataFrame(d)
|
75 |
+
file_text += do_indent(df)
|
76 |
+
|
77 |
+
f = open(tfile,'w')
|
78 |
+
f.write(file_text)
|
79 |
+
f.close()
|
80 |
+
|
81 |
+
|
82 |
+
|
code/outfile.png
ADDED