--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 base_model: xlm-roberta-base model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: type: token-classification name: Token Classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - type: f1 value: 0.6886160714285715 name: F1 --- # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4043 - F1: 0.6886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1347 | 1.0 | 50 | 0.5771 | 0.4880 | | 0.5066 | 2.0 | 100 | 0.4209 | 0.6582 | | 0.3631 | 3.0 | 150 | 0.4043 | 0.6886 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3