File size: 39,288 Bytes
e15c783 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
main: build = 3906 (7eee341b) main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0 main: quantizing 'salamandra-2b-instruct_bf16.gguf' to './salamandra-2b-instruct_Q3_K_M.gguf' as Q3_K_M llama_model_loader: loaded meta data with 31 key-value pairs and 219 tensors from salamandra-2b-instruct_bf16.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.size_label str = 2.3B llama_model_loader: - kv 3: general.license str = apache-2.0 llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"] llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"... llama_model_loader: - kv 6: llama.block_count u32 = 24 llama_model_loader: - kv 7: llama.context_length u32 = 8192 llama_model_loader: - kv 8: llama.embedding_length u32 = 2048 llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440 llama_model_loader: - kv 10: llama.attention.head_count u32 = 16 llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16 llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 14: general.file_type u32 = 32 llama_model_loader: - kv 15: llama.vocab_size u32 = 256000 llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128 llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true llama_model_loader: - kv 18: tokenizer.ggml.model str = llama llama_model_loader: - kv 19: tokenizer.ggml.pre str = default llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|... llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00... llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ... llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0 llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{... llama_model_loader: - kv 30: general.quantization_version u32 = 2 llama_model_loader: - type f32: 49 tensors llama_model_loader: - type bf16: 170 tensors ================================ Have weights data with 168 entries [ 1/ 219] output.weight - [ 2048, 256000, 1, 1], type = bf16, size = 1000.000 MB [ 2/ 219] token_embd.weight - [ 2048, 256000, 1, 1], type = bf16, ====== llama_model_quantize_internal: did not find weights for token_embd.weight converting to q3_K .. load_imatrix: imatrix dataset='./imatrix/oscar/imatrix-dataset.txt' load_imatrix: loaded 168 importance matrix entries from imatrix/oscar/imatrix.dat computed on 44176 chunks prepare_imatrix: have 168 importance matrix entries size = 1000.00 MiB -> 214.84 MiB [ 3/ 219] blk.0.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 4/ 219] blk.0.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1 converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB [ 5/ 219] blk.0.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 6/ 219] blk.0.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 7/ 219] blk.0.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 8/ 219] blk.0.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 9/ 219] blk.0.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 10/ 219] blk.0.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 11/ 219] blk.0.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB [ 12/ 219] blk.1.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 13/ 219] blk.1.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 14/ 219] blk.1.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 15/ 219] blk.1.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 16/ 219] blk.1.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 17/ 219] blk.1.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 18/ 219] blk.1.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 19/ 219] blk.1.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 20/ 219] blk.1.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB [ 21/ 219] blk.10.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 22/ 219] blk.10.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 23/ 219] blk.10.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 24/ 219] blk.10.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 25/ 219] blk.10.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 26/ 219] blk.10.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 27/ 219] blk.10.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 28/ 219] blk.10.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 29/ 219] blk.10.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 30/ 219] blk.11.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 31/ 219] blk.11.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 32/ 219] blk.11.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 33/ 219] blk.11.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 34/ 219] blk.11.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 35/ 219] blk.11.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 36/ 219] blk.11.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 37/ 219] blk.11.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 38/ 219] blk.11.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 39/ 219] blk.12.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 40/ 219] blk.12.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 41/ 219] blk.12.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 42/ 219] blk.12.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 43/ 219] blk.12.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 44/ 219] blk.12.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 45/ 219] blk.12.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 46/ 219] blk.12.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 47/ 219] blk.12.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 48/ 219] blk.13.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 49/ 219] blk.13.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 50/ 219] blk.13.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 51/ 219] blk.13.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 52/ 219] blk.13.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 53/ 219] blk.13.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 54/ 219] blk.13.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 55/ 219] blk.13.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 56/ 219] blk.13.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 57/ 219] blk.14.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 58/ 219] blk.14.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 59/ 219] blk.14.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 60/ 219] blk.14.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 61/ 219] blk.14.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 62/ 219] blk.14.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 63/ 219] blk.14.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 64/ 219] blk.14.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 65/ 219] blk.14.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 66/ 219] blk.15.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 67/ 219] blk.15.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 68/ 219] blk.15.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 69/ 219] blk.15.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 70/ 219] blk.15.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 71/ 219] blk.15.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 72/ 219] blk.15.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 73/ 219] blk.15.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 74/ 219] blk.15.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 75/ 219] blk.16.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 76/ 219] blk.16.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 77/ 219] blk.16.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 78/ 219] blk.16.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 79/ 219] blk.16.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 80/ 219] blk.16.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 81/ 219] blk.16.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 82/ 219] blk.16.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 83/ 219] blk.16.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 84/ 219] blk.17.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 85/ 219] blk.17.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 86/ 219] blk.17.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 87/ 219] blk.17.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 88/ 219] blk.17.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 89/ 219] blk.17.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 90/ 219] blk.17.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 91/ 219] blk.17.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 92/ 219] blk.17.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 93/ 219] blk.18.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 94/ 219] blk.18.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 95/ 219] blk.18.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 96/ 219] blk.18.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 97/ 219] blk.18.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 98/ 219] blk.18.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 99/ 219] blk.18.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 100/ 219] blk.18.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 101/ 219] blk.18.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 102/ 219] blk.19.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 103/ 219] blk.19.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 104/ 219] blk.19.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 105/ 219] blk.19.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 106/ 219] blk.19.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 107/ 219] blk.19.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 108/ 219] blk.19.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 109/ 219] blk.19.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 110/ 219] blk.19.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 111/ 219] blk.2.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 112/ 219] blk.2.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 113/ 219] blk.2.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 114/ 219] blk.2.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 115/ 219] blk.2.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 116/ 219] blk.2.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 117/ 219] blk.2.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 118/ 219] blk.2.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 119/ 219] blk.2.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 120/ 219] blk.20.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 121/ 219] blk.20.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 122/ 219] blk.20.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 123/ 219] blk.20.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 124/ 219] blk.20.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 125/ 219] blk.20.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 126/ 219] blk.20.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 127/ 219] blk.20.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 128/ 219] blk.20.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 129/ 219] blk.21.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 130/ 219] blk.21.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 131/ 219] blk.21.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 132/ 219] blk.21.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 133/ 219] blk.21.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 134/ 219] blk.21.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 135/ 219] blk.21.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 136/ 219] blk.21.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 137/ 219] blk.21.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 138/ 219] blk.22.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 139/ 219] blk.22.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 140/ 219] blk.22.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 141/ 219] blk.22.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 142/ 219] blk.22.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 143/ 219] blk.22.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 144/ 219] blk.22.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 145/ 219] blk.22.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 146/ 219] blk.22.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 147/ 219] blk.23.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 148/ 219] blk.23.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 149/ 219] blk.23.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 150/ 219] blk.23.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 151/ 219] blk.23.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 152/ 219] blk.23.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 153/ 219] blk.23.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 154/ 219] blk.23.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 155/ 219] blk.23.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 156/ 219] blk.3.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 157/ 219] blk.3.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 158/ 219] blk.3.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 159/ 219] blk.3.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 160/ 219] blk.3.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 161/ 219] blk.3.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 162/ 219] blk.3.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 163/ 219] blk.3.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 164/ 219] blk.3.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 165/ 219] blk.4.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 166/ 219] blk.4.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 167/ 219] blk.4.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 168/ 219] blk.4.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 169/ 219] blk.4.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 170/ 219] blk.4.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 171/ 219] blk.4.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 172/ 219] blk.4.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 173/ 219] blk.4.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 174/ 219] blk.5.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 175/ 219] blk.5.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 176/ 219] blk.5.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 177/ 219] blk.5.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 178/ 219] blk.5.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 179/ 219] blk.5.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 180/ 219] blk.5.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 181/ 219] blk.5.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 182/ 219] blk.5.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 183/ 219] blk.6.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 184/ 219] blk.6.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 185/ 219] blk.6.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 186/ 219] blk.6.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 187/ 219] blk.6.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 188/ 219] blk.6.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 189/ 219] blk.6.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 190/ 219] blk.6.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 191/ 219] blk.6.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 192/ 219] blk.7.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 193/ 219] blk.7.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 194/ 219] blk.7.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 195/ 219] blk.7.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 196/ 219] blk.7.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 197/ 219] blk.7.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 198/ 219] blk.7.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 199/ 219] blk.7.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 200/ 219] blk.7.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 201/ 219] blk.8.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 202/ 219] blk.8.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 203/ 219] blk.8.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 204/ 219] blk.8.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 205/ 219] blk.8.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 206/ 219] blk.8.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 207/ 219] blk.8.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 208/ 219] blk.8.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 209/ 219] blk.8.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 210/ 219] blk.9.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 211/ 219] blk.9.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0 converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB [ 212/ 219] blk.9.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 213/ 219] blk.9.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB [ 214/ 219] blk.9.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB [ 215/ 219] blk.9.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 216/ 219] blk.9.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 217/ 219] blk.9.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB [ 218/ 219] blk.9.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB [ 219/ 219] output_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB llama_model_quantize_internal: model size = 4298.38 MB llama_model_quantize_internal: quant size = 1801.84 MB llama_model_quantize_internal: WARNING: 24 of 169 tensor(s) required fallback quantization main: quantize time = 5431.48 ms main: total time = 5431.48 ms |