salamandra-2b-instruct / perplexity_IQ4_XS.txt
robbiemu's picture
files
e15c783
build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
llama_model_loader: loaded meta data with 35 key-value pairs and 219 tensors from salamandra-2b-instruct_IQ4_XS.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.size_label str = 2.3B
llama_model_loader: - kv 3: general.license str = apache-2.0
llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
llama_model_loader: - kv 6: llama.block_count u32 = 24
llama_model_loader: - kv 7: llama.context_length u32 = 8192
llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 14: general.file_type u32 = 30
llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
llama_model_loader: - kv 30: general.quantization_version u32 = 2
llama_model_loader: - kv 31: quantize.imatrix.file str = imatrix/oscar/imatrix.dat
llama_model_loader: - kv 32: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt
llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 168
llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 44176
llama_model_loader: - type f32: 49 tensors
llama_model_loader: - type iq4_nl: 24 tensors
llama_model_loader: - type iq4_xs: 145 tensors
llama_model_loader: - type bf16: 1 tensors
llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
llm_load_vocab: special tokens cache size = 104
llm_load_vocab: token to piece cache size = 1.8842 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 256000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 8192
llm_load_print_meta: n_embd = 2048
llm_load_print_meta: n_layer = 24
llm_load_print_meta: n_head = 16
llm_load_print_meta: n_head_kv = 16
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 2048
llm_load_print_meta: n_embd_v_gqa = 2048
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 5440
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 8192
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = ?B
llm_load_print_meta: model ftype = IQ4_XS - 4.25 bpw
llm_load_print_meta: model params = 2.25 B
llm_load_print_meta: model size = 1.84 GiB (7.01 BPW)
llm_load_print_meta: general.name = n/a
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: PAD token = 0 '<unk>'
llm_load_print_meta: LF token = 145 '<0x0A>'
llm_load_print_meta: EOT token = 5 '<|im_end|>'
llm_load_print_meta: EOG token = 2 '</s>'
llm_load_print_meta: EOG token = 5 '<|im_end|>'
llm_load_print_meta: max token length = 72
llm_load_tensors: ggml ctx size = 0.20 MiB
llm_load_tensors: offloading 24 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 25/25 layers to GPU
llm_load_tensors: Metal buffer size = 1884.39 MiB
llm_load_tensors: CPU buffer size = 265.62 MiB
..................................
llama_new_context_with_model: n_ctx = 8192
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 128
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M3 Max
ggml_metal_init: picking default device: Apple M3 Max
ggml_metal_init: using embedded metal library
ggml_metal_init: GPU name: Apple M3 Max
ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
ggml_metal_init: simdgroup reduction support = true
ggml_metal_init: simdgroup matrix mul. support = true
ggml_metal_init: hasUnifiedMemory = true
ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
llama_new_context_with_model: CPU output buffer size = 0.98 MiB
llama_new_context_with_model: Metal compute buffer size = 72.00 MiB
llama_new_context_with_model: CPU compute buffer size = 125.00 MiB
llama_new_context_with_model: graph nodes = 774
llama_new_context_with_model: graph splits = 3
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
perplexity: tokenizing the input ..
perplexity: tokenization took 3099.45 ms
perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1
perplexity: 10.31 seconds per pass - ETA 23.00 minutes
[1]17.8167,[2]18.0705,[3]16.3976,[4]16.1215,[5]15.4362,[6]14.9422,[7]15.8537,[8]15.3436,[9]15.0474,[10]14.3227,[11]14.9690,[12]15.0226,[13]16.1201,[14]16.4014,[15]16.3742,[16]16.9158,[17]17.2166,[18]17.1125,[19]17.1527,[20]17.4651,[21]17.5004,[22]15.4609,[23]15.6366,[24]15.2567,[25]14.7378,[26]14.2840,[27]14.0919,[28]13.9120,[29]13.8603,[30]13.6514,[31]13.8921,[32]13.9921,[33]14.4692,[34]14.7709,[35]15.0755,[36]14.8338,[37]14.8171,[38]14.8906,[39]14.7340,[40]14.7632,[41]14.7391,[42]14.5446,[43]14.4886,[44]14.6561,[45]14.8620,[46]14.7118,[47]14.9569,[48]15.0716,[49]15.3563,[50]15.6462,[51]15.6825,[52]15.8983,[53]16.2220,[54]16.5502,[55]16.6636,[56]16.4935,[57]16.3981,[58]16.1197,[59]16.0098,[60]15.8137,[61]15.8656,[62]16.0061,[63]16.1968,[64]16.2610,[65]16.2910,[66]16.4835,[67]16.4573,[68]16.3437,[69]16.2004,[70]16.0920,[71]16.0879,[72]16.0330,[73]16.0426,[74]15.9853,[75]15.9703,[76]15.9103,[77]15.9678,[78]15.9668,[79]15.9740,[80]16.0093,[81]15.7006,[82]15.6736,[83]15.5423,[84]15.5787,[85]15.6275,[86]15.8283,[87]15.8570,[88]16.0134,[89]16.0676,[90]16.1957,[91]16.2561,[92]16.0921,[93]16.1584,[94]16.1444,[95]16.2856,[96]16.4782,[97]16.5562,[98]16.6545,[99]16.8011,[100]16.8430,[101]16.8704,[102]16.8313,[103]16.8018,[104]16.7863,[105]16.7704,[106]16.6389,[107]16.5075,[108]16.5685,[109]16.5863,[110]16.4964,[111]16.4600,[112]16.3090,[113]16.1650,[114]16.1582,[115]16.1318,[116]16.1406,[117]16.0316,[118]15.8973,[119]15.8895,[120]15.9499,[121]15.9650,[122]15.9896,[123]16.0269,[124]16.0444,[125]16.0395,[126]16.0661,[127]16.0901,[128]16.1712,[129]16.1612,[130]16.1360,[131]16.1936,[132]16.1694,[133]16.1121,[134]15.9591,
Final estimate: PPL = 15.9591 +/- 0.06513
llama_perf_context_print: load time = 1240.44 ms
llama_perf_context_print: prompt eval time = 1316825.15 ms / 1097728 tokens ( 1.20 ms per token, 833.62 tokens per second)
llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
llama_perf_context_print: total time = 1357907.16 ms / 1097729 tokens
ggml_metal_free: deallocating