robbiemu commited on
Commit
99eb6bf
2 Parent(s): 568359d e15c783

robbiemu merge

Browse files
.gitattributes CHANGED
@@ -34,3 +34,17 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  images/salamandra_header.png filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  images/salamandra_header.png filter=lfs diff=lfs merge=lfs -text
37
+ salamandra-2b-instruct_bf16.gguf filter=lfs diff=lfs merge=lfs -text
38
+ salamandra-2b-instruct_IQ2_M.gguf filter=lfs diff=lfs merge=lfs -text
39
+ salamandra-2b-instruct_IQ3_M.gguf filter=lfs diff=lfs merge=lfs -text
40
+ salamandra-2b-instruct_Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
41
+ salamandra-2b-instruct_Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
42
+ salamandra-2b-instruct_IQ2_S.gguf filter=lfs diff=lfs merge=lfs -text
43
+ salamandra-2b-instruct_Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
44
+ salamandra-2b-instruct_Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
45
+ salamandra-2b-instruct_IQ4_NL.gguf filter=lfs diff=lfs merge=lfs -text
46
+ salamandra-2b-instruct_Q3_K_M.gguf filter=lfs diff=lfs merge=lfs -text
47
+ salamandra-2b-instruct_Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
48
+ salamandra-2b-instruct_Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
49
+ salamandra-2b-instruct_IQ4_XS.gguf filter=lfs diff=lfs merge=lfs -text
50
+ salamandra-2b-instruct_Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
110
+ .pdm.toml
111
+ .pdm-python
112
+ .pdm-build/
113
+
114
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
115
+ __pypackages__/
116
+
117
+ # Celery stuff
118
+ celerybeat-schedule
119
+ celerybeat.pid
120
+
121
+ # SageMath parsed files
122
+ *.sage.py
123
+
124
+ # Environments
125
+ .env
126
+ .venv
127
+ env/
128
+ venv/
129
+ ENV/
130
+ env.bak/
131
+ venv.bak/
132
+
133
+ # Spyder project settings
134
+ .spyderproject
135
+ .spyproject
136
+
137
+ # Rope project settings
138
+ .ropeproject
139
+
140
+ # mkdocs documentation
141
+ /site
142
+
143
+ # mypy
144
+ .mypy_cache/
145
+ .dmypy.json
146
+ dmypy.json
147
+
148
+ # Pyre type checker
149
+ .pyre/
150
+
151
+ # pytype static type analyzer
152
+ .pytype/
153
+
154
+ # Cython debug symbols
155
+ cython_debug/
156
+
157
+ # PyCharm
158
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
159
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
160
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
161
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
162
+ #.idea/
163
+
164
+ # General
165
+ .DS_Store
166
+ .AppleDouble
167
+ .LSOverride
168
+
169
+ # Icon must end with two \r
170
+ Icon
171
+
172
+ # Thumbnails
173
+ ._*
174
+
175
+ # Files that might appear in the root of a volume
176
+ .DocumentRevisions-V100
177
+ .fseventsd
178
+ .Spotlight-V100
179
+ .TemporaryItems
180
+ .Trashes
181
+ .VolumeIcon.icns
182
+ .com.apple.timemachine.donotpresent
183
+
184
+ # Directories potentially created on remote AFP share
185
+ .AppleDB
186
+ .AppleDesktop
187
+ Network Trash Folder
188
+ Temporary Items
189
+ .apdisk
IQ2_M_log.txt ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ main: build = 3906 (7eee341b)
2
+ main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
3
+ main: quantizing 'salamandra-2b-instruct_bf16.gguf' to './salamandra-2b-instruct_IQ2_M.gguf' as IQ2_M
4
+ llama_model_loader: loaded meta data with 31 key-value pairs and 219 tensors from salamandra-2b-instruct_bf16.gguf (version GGUF V3 (latest))
5
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
6
+ llama_model_loader: - kv 0: general.architecture str = llama
7
+ llama_model_loader: - kv 1: general.type str = model
8
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
9
+ llama_model_loader: - kv 3: general.license str = apache-2.0
10
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
11
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
12
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
13
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
14
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
15
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
16
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
17
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
18
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
19
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
20
+ llama_model_loader: - kv 14: general.file_type u32 = 32
21
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
22
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
23
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
24
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
25
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
26
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
27
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
28
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
29
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
30
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
31
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
32
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
33
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
34
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
35
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
36
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
37
+ llama_model_loader: - type f32: 49 tensors
38
+ llama_model_loader: - type bf16: 170 tensors
39
+ ================================ Have weights data with 168 entries
40
+ [ 1/ 219] output.weight - [ 2048, 256000, 1, 1], type = bf16, size = 1000.000 MB
41
+ [ 2/ 219] token_embd.weight - [ 2048, 256000, 1, 1], type = bf16,
42
+ ====== llama_model_quantize_internal: did not find weights for token_embd.weight
43
+ converting to iq3_s .. load_imatrix: imatrix dataset='./imatrix/oscar/imatrix-dataset.txt'
44
+ load_imatrix: loaded 168 importance matrix entries from imatrix/oscar/imatrix.dat computed on 44176 chunks
45
+ prepare_imatrix: have 168 importance matrix entries
46
+ size = 1000.00 MiB -> 214.84 MiB
47
+ [ 3/ 219] blk.0.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
48
+ [ 4/ 219] blk.0.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
49
+
50
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
51
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
52
+ [ 5/ 219] blk.0.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
53
+ [ 6/ 219] blk.0.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
54
+ [ 7/ 219] blk.0.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
55
+ [ 8/ 219] blk.0.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
56
+ [ 9/ 219] blk.0.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
57
+ [ 10/ 219] blk.0.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
58
+ [ 11/ 219] blk.0.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
59
+ [ 12/ 219] blk.1.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
60
+ [ 13/ 219] blk.1.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
61
+
62
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
63
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
64
+ [ 14/ 219] blk.1.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
65
+ [ 15/ 219] blk.1.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
66
+ [ 16/ 219] blk.1.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
67
+ [ 17/ 219] blk.1.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
68
+ [ 18/ 219] blk.1.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
69
+ [ 19/ 219] blk.1.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
70
+ [ 20/ 219] blk.1.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
71
+ [ 21/ 219] blk.10.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
72
+ [ 22/ 219] blk.10.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
73
+
74
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
75
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
76
+ [ 23/ 219] blk.10.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
77
+ [ 24/ 219] blk.10.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
78
+ [ 25/ 219] blk.10.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
79
+ [ 26/ 219] blk.10.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
80
+ [ 27/ 219] blk.10.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
81
+ [ 28/ 219] blk.10.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
82
+ [ 29/ 219] blk.10.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
83
+ [ 30/ 219] blk.11.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
84
+ [ 31/ 219] blk.11.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
85
+
86
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
87
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
88
+ [ 32/ 219] blk.11.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
89
+ [ 33/ 219] blk.11.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
90
+ [ 34/ 219] blk.11.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
91
+ [ 35/ 219] blk.11.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
92
+ [ 36/ 219] blk.11.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
93
+ [ 37/ 219] blk.11.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
94
+ [ 38/ 219] blk.11.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
95
+ [ 39/ 219] blk.12.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
96
+ [ 40/ 219] blk.12.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
97
+
98
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
99
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
100
+ [ 41/ 219] blk.12.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
101
+ [ 42/ 219] blk.12.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
102
+ [ 43/ 219] blk.12.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
103
+ [ 44/ 219] blk.12.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
104
+ [ 45/ 219] blk.12.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
105
+ [ 46/ 219] blk.12.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
106
+ [ 47/ 219] blk.12.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
107
+ [ 48/ 219] blk.13.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
108
+ [ 49/ 219] blk.13.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
109
+
110
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
111
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
112
+ [ 50/ 219] blk.13.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
113
+ [ 51/ 219] blk.13.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
114
+ [ 52/ 219] blk.13.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
115
+ [ 53/ 219] blk.13.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
116
+ [ 54/ 219] blk.13.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
117
+ [ 55/ 219] blk.13.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
118
+ [ 56/ 219] blk.13.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
119
+ [ 57/ 219] blk.14.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
120
+ [ 58/ 219] blk.14.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
121
+
122
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
123
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
124
+ [ 59/ 219] blk.14.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
125
+ [ 60/ 219] blk.14.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
126
+ [ 61/ 219] blk.14.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
127
+ [ 62/ 219] blk.14.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
128
+ [ 63/ 219] blk.14.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
129
+ [ 64/ 219] blk.14.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
130
+ [ 65/ 219] blk.14.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
131
+ [ 66/ 219] blk.15.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
132
+ [ 67/ 219] blk.15.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
133
+
134
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
135
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
136
+ [ 68/ 219] blk.15.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
137
+ [ 69/ 219] blk.15.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
138
+ [ 70/ 219] blk.15.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
139
+ [ 71/ 219] blk.15.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
140
+ [ 72/ 219] blk.15.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
141
+ [ 73/ 219] blk.15.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
142
+ [ 74/ 219] blk.15.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
143
+ [ 75/ 219] blk.16.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
144
+ [ 76/ 219] blk.16.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
145
+
146
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
147
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
148
+ [ 77/ 219] blk.16.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
149
+ [ 78/ 219] blk.16.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
150
+ [ 79/ 219] blk.16.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
151
+ [ 80/ 219] blk.16.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
152
+ [ 81/ 219] blk.16.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
153
+ [ 82/ 219] blk.16.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
154
+ [ 83/ 219] blk.16.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
155
+ [ 84/ 219] blk.17.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
156
+ [ 85/ 219] blk.17.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
157
+
158
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
159
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
160
+ [ 86/ 219] blk.17.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
161
+ [ 87/ 219] blk.17.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
162
+ [ 88/ 219] blk.17.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
163
+ [ 89/ 219] blk.17.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
164
+ [ 90/ 219] blk.17.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
165
+ [ 91/ 219] blk.17.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
166
+ [ 92/ 219] blk.17.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
167
+ [ 93/ 219] blk.18.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
168
+ [ 94/ 219] blk.18.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
169
+
170
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
171
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
172
+ [ 95/ 219] blk.18.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
173
+ [ 96/ 219] blk.18.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
174
+ [ 97/ 219] blk.18.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
175
+ [ 98/ 219] blk.18.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
176
+ [ 99/ 219] blk.18.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
177
+ [ 100/ 219] blk.18.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
178
+ [ 101/ 219] blk.18.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
179
+ [ 102/ 219] blk.19.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
180
+ [ 103/ 219] blk.19.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
181
+
182
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
183
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
184
+ [ 104/ 219] blk.19.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
185
+ [ 105/ 219] blk.19.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
186
+ [ 106/ 219] blk.19.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
187
+ [ 107/ 219] blk.19.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
188
+ [ 108/ 219] blk.19.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
189
+ [ 109/ 219] blk.19.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
190
+ [ 110/ 219] blk.19.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
191
+ [ 111/ 219] blk.2.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
192
+ [ 112/ 219] blk.2.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
193
+
194
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
195
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
196
+ [ 113/ 219] blk.2.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
197
+ [ 114/ 219] blk.2.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
198
+ [ 115/ 219] blk.2.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
199
+ [ 116/ 219] blk.2.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
200
+ [ 117/ 219] blk.2.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
201
+ [ 118/ 219] blk.2.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
202
+ [ 119/ 219] blk.2.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
203
+ [ 120/ 219] blk.20.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
204
+ [ 121/ 219] blk.20.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
205
+
206
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
207
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
208
+ [ 122/ 219] blk.20.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
209
+ [ 123/ 219] blk.20.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
210
+ [ 124/ 219] blk.20.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
211
+ [ 125/ 219] blk.20.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
212
+ [ 126/ 219] blk.20.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
213
+ [ 127/ 219] blk.20.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
214
+ [ 128/ 219] blk.20.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
215
+ [ 129/ 219] blk.21.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
216
+ [ 130/ 219] blk.21.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
217
+
218
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
219
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
220
+ [ 131/ 219] blk.21.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
221
+ [ 132/ 219] blk.21.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
222
+ [ 133/ 219] blk.21.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
223
+ [ 134/ 219] blk.21.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
224
+ [ 135/ 219] blk.21.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
225
+ [ 136/ 219] blk.21.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
226
+ [ 137/ 219] blk.21.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
227
+ [ 138/ 219] blk.22.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
228
+ [ 139/ 219] blk.22.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
229
+
230
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
231
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
232
+ [ 140/ 219] blk.22.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
233
+ [ 141/ 219] blk.22.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
234
+ [ 142/ 219] blk.22.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
235
+ [ 143/ 219] blk.22.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
236
+ [ 144/ 219] blk.22.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
237
+ [ 145/ 219] blk.22.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
238
+ [ 146/ 219] blk.22.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
239
+ [ 147/ 219] blk.23.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
240
+ [ 148/ 219] blk.23.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
241
+
242
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
243
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
244
+ [ 149/ 219] blk.23.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
245
+ [ 150/ 219] blk.23.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
246
+ [ 151/ 219] blk.23.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
247
+ [ 152/ 219] blk.23.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
248
+ [ 153/ 219] blk.23.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
249
+ [ 154/ 219] blk.23.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
250
+ [ 155/ 219] blk.23.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
251
+ [ 156/ 219] blk.3.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
252
+ [ 157/ 219] blk.3.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
253
+
254
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
255
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
256
+ [ 158/ 219] blk.3.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
257
+ [ 159/ 219] blk.3.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
258
+ [ 160/ 219] blk.3.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
259
+ [ 161/ 219] blk.3.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
260
+ [ 162/ 219] blk.3.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
261
+ [ 163/ 219] blk.3.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
262
+ [ 164/ 219] blk.3.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
263
+ [ 165/ 219] blk.4.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
264
+ [ 166/ 219] blk.4.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
265
+
266
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
267
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
268
+ [ 167/ 219] blk.4.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
269
+ [ 168/ 219] blk.4.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
270
+ [ 169/ 219] blk.4.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
271
+ [ 170/ 219] blk.4.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
272
+ [ 171/ 219] blk.4.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
273
+ [ 172/ 219] blk.4.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
274
+ [ 173/ 219] blk.4.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
275
+ [ 174/ 219] blk.5.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
276
+ [ 175/ 219] blk.5.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
277
+
278
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
279
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
280
+ [ 176/ 219] blk.5.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
281
+ [ 177/ 219] blk.5.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
282
+ [ 178/ 219] blk.5.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
283
+ [ 179/ 219] blk.5.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
284
+ [ 180/ 219] blk.5.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
285
+ [ 181/ 219] blk.5.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
286
+ [ 182/ 219] blk.5.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
287
+ [ 183/ 219] blk.6.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
288
+ [ 184/ 219] blk.6.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
289
+
290
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
291
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
292
+ [ 185/ 219] blk.6.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
293
+ [ 186/ 219] blk.6.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
294
+ [ 187/ 219] blk.6.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
295
+ [ 188/ 219] blk.6.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
296
+ [ 189/ 219] blk.6.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
297
+ [ 190/ 219] blk.6.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
298
+ [ 191/ 219] blk.6.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
299
+ [ 192/ 219] blk.7.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
300
+ [ 193/ 219] blk.7.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
301
+
302
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
303
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
304
+ [ 194/ 219] blk.7.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
305
+ [ 195/ 219] blk.7.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
306
+ [ 196/ 219] blk.7.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
307
+ [ 197/ 219] blk.7.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
308
+ [ 198/ 219] blk.7.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
309
+ [ 199/ 219] blk.7.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
310
+ [ 200/ 219] blk.7.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
311
+ [ 201/ 219] blk.8.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
312
+ [ 202/ 219] blk.8.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
313
+
314
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
315
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
316
+ [ 203/ 219] blk.8.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
317
+ [ 204/ 219] blk.8.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
318
+ [ 205/ 219] blk.8.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
319
+ [ 206/ 219] blk.8.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
320
+ [ 207/ 219] blk.8.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
321
+ [ 208/ 219] blk.8.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
322
+ [ 209/ 219] blk.8.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
323
+ [ 210/ 219] blk.9.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
324
+ [ 211/ 219] blk.9.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
325
+
326
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_s - using fallback quantization iq4_nl
327
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
328
+ [ 212/ 219] blk.9.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
329
+ [ 213/ 219] blk.9.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_s .. size = 21.25 MiB -> 3.40 MiB
330
+ [ 214/ 219] blk.9.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
331
+ [ 215/ 219] blk.9.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
332
+ [ 216/ 219] blk.9.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
333
+ [ 217/ 219] blk.9.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_s .. size = 8.00 MiB -> 1.28 MiB
334
+ [ 218/ 219] blk.9.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
335
+ [ 219/ 219] output_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
336
+ llama_model_quantize_internal: model size = 4298.38 MB
337
+ llama_model_quantize_internal: quant size = 1666.02 MB
338
+ llama_model_quantize_internal: WARNING: 24 of 169 tensor(s) required fallback quantization
339
+
340
+ main: quantize time = 22948.49 ms
341
+ main: total time = 22948.49 ms
IQ2_S_log.txt ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ main: build = 3906 (7eee341b)
2
+ main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
3
+ main: quantizing 'salamandra-2b-instruct_bf16.gguf' to './salamandra-2b-instruct_IQ2_S.gguf' as IQ2_S
4
+ llama_model_loader: loaded meta data with 31 key-value pairs and 219 tensors from salamandra-2b-instruct_bf16.gguf (version GGUF V3 (latest))
5
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
6
+ llama_model_loader: - kv 0: general.architecture str = llama
7
+ llama_model_loader: - kv 1: general.type str = model
8
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
9
+ llama_model_loader: - kv 3: general.license str = apache-2.0
10
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
11
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
12
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
13
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
14
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
15
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
16
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
17
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
18
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
19
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
20
+ llama_model_loader: - kv 14: general.file_type u32 = 32
21
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
22
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
23
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
24
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
25
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
26
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
27
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
28
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
29
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
30
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
31
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
32
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
33
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
34
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
35
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
36
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
37
+ llama_model_loader: - type f32: 49 tensors
38
+ llama_model_loader: - type bf16: 170 tensors
39
+ ================================ Have weights data with 168 entries
40
+ [ 1/ 219] output.weight - [ 2048, 256000, 1, 1], type = bf16, size = 1000.000 MB
41
+ [ 2/ 219] token_embd.weight - [ 2048, 256000, 1, 1], type = bf16,
42
+ ====== llama_model_quantize_internal: did not find weights for token_embd.weight
43
+ converting to iq3_s .. load_imatrix: imatrix dataset='./imatrix/oscar/imatrix-dataset.txt'
44
+ load_imatrix: loaded 168 importance matrix entries from imatrix/oscar/imatrix.dat computed on 44176 chunks
45
+ prepare_imatrix: have 168 importance matrix entries
46
+ size = 1000.00 MiB -> 214.84 MiB
47
+ [ 3/ 219] blk.0.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
48
+ [ 4/ 219] blk.0.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
49
+
50
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
51
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
52
+ [ 5/ 219] blk.0.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
53
+ [ 6/ 219] blk.0.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
54
+ [ 7/ 219] blk.0.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
55
+ [ 8/ 219] blk.0.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
56
+ [ 9/ 219] blk.0.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
57
+ [ 10/ 219] blk.0.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
58
+ [ 11/ 219] blk.0.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
59
+ [ 12/ 219] blk.1.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
60
+ [ 13/ 219] blk.1.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
61
+
62
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
63
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
64
+ [ 14/ 219] blk.1.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
65
+ [ 15/ 219] blk.1.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
66
+ [ 16/ 219] blk.1.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
67
+ [ 17/ 219] blk.1.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
68
+ [ 18/ 219] blk.1.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
69
+ [ 19/ 219] blk.1.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
70
+ [ 20/ 219] blk.1.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
71
+ [ 21/ 219] blk.10.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
72
+ [ 22/ 219] blk.10.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
73
+
74
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
75
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
76
+ [ 23/ 219] blk.10.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
77
+ [ 24/ 219] blk.10.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
78
+ [ 25/ 219] blk.10.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
79
+ [ 26/ 219] blk.10.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
80
+ [ 27/ 219] blk.10.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
81
+ [ 28/ 219] blk.10.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
82
+ [ 29/ 219] blk.10.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
83
+ [ 30/ 219] blk.11.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
84
+ [ 31/ 219] blk.11.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
85
+
86
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
87
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
88
+ [ 32/ 219] blk.11.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
89
+ [ 33/ 219] blk.11.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
90
+ [ 34/ 219] blk.11.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
91
+ [ 35/ 219] blk.11.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
92
+ [ 36/ 219] blk.11.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
93
+ [ 37/ 219] blk.11.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
94
+ [ 38/ 219] blk.11.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
95
+ [ 39/ 219] blk.12.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
96
+ [ 40/ 219] blk.12.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
97
+
98
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
99
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
100
+ [ 41/ 219] blk.12.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
101
+ [ 42/ 219] blk.12.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
102
+ [ 43/ 219] blk.12.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
103
+ [ 44/ 219] blk.12.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
104
+ [ 45/ 219] blk.12.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
105
+ [ 46/ 219] blk.12.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
106
+ [ 47/ 219] blk.12.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
107
+ [ 48/ 219] blk.13.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
108
+ [ 49/ 219] blk.13.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
109
+
110
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
111
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
112
+ [ 50/ 219] blk.13.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
113
+ [ 51/ 219] blk.13.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
114
+ [ 52/ 219] blk.13.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
115
+ [ 53/ 219] blk.13.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
116
+ [ 54/ 219] blk.13.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
117
+ [ 55/ 219] blk.13.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
118
+ [ 56/ 219] blk.13.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
119
+ [ 57/ 219] blk.14.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
120
+ [ 58/ 219] blk.14.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
121
+
122
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
123
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
124
+ [ 59/ 219] blk.14.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
125
+ [ 60/ 219] blk.14.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
126
+ [ 61/ 219] blk.14.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
127
+ [ 62/ 219] blk.14.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
128
+ [ 63/ 219] blk.14.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
129
+ [ 64/ 219] blk.14.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
130
+ [ 65/ 219] blk.14.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
131
+ [ 66/ 219] blk.15.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
132
+ [ 67/ 219] blk.15.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
133
+
134
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
135
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
136
+ [ 68/ 219] blk.15.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
137
+ [ 69/ 219] blk.15.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
138
+ [ 70/ 219] blk.15.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
139
+ [ 71/ 219] blk.15.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
140
+ [ 72/ 219] blk.15.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
141
+ [ 73/ 219] blk.15.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
142
+ [ 74/ 219] blk.15.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
143
+ [ 75/ 219] blk.16.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
144
+ [ 76/ 219] blk.16.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
145
+
146
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
147
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
148
+ [ 77/ 219] blk.16.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
149
+ [ 78/ 219] blk.16.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
150
+ [ 79/ 219] blk.16.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
151
+ [ 80/ 219] blk.16.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
152
+ [ 81/ 219] blk.16.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
153
+ [ 82/ 219] blk.16.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
154
+ [ 83/ 219] blk.16.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
155
+ [ 84/ 219] blk.17.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
156
+ [ 85/ 219] blk.17.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
157
+
158
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
159
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
160
+ [ 86/ 219] blk.17.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
161
+ [ 87/ 219] blk.17.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
162
+ [ 88/ 219] blk.17.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
163
+ [ 89/ 219] blk.17.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
164
+ [ 90/ 219] blk.17.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
165
+ [ 91/ 219] blk.17.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
166
+ [ 92/ 219] blk.17.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
167
+ [ 93/ 219] blk.18.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
168
+ [ 94/ 219] blk.18.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
169
+
170
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
171
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
172
+ [ 95/ 219] blk.18.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
173
+ [ 96/ 219] blk.18.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
174
+ [ 97/ 219] blk.18.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
175
+ [ 98/ 219] blk.18.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
176
+ [ 99/ 219] blk.18.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
177
+ [ 100/ 219] blk.18.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
178
+ [ 101/ 219] blk.18.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
179
+ [ 102/ 219] blk.19.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
180
+ [ 103/ 219] blk.19.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
181
+
182
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
183
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
184
+ [ 104/ 219] blk.19.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
185
+ [ 105/ 219] blk.19.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
186
+ [ 106/ 219] blk.19.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
187
+ [ 107/ 219] blk.19.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
188
+ [ 108/ 219] blk.19.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
189
+ [ 109/ 219] blk.19.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
190
+ [ 110/ 219] blk.19.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
191
+ [ 111/ 219] blk.2.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
192
+ [ 112/ 219] blk.2.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
193
+
194
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
195
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
196
+ [ 113/ 219] blk.2.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
197
+ [ 114/ 219] blk.2.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
198
+ [ 115/ 219] blk.2.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
199
+ [ 116/ 219] blk.2.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
200
+ [ 117/ 219] blk.2.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
201
+ [ 118/ 219] blk.2.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
202
+ [ 119/ 219] blk.2.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
203
+ [ 120/ 219] blk.20.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
204
+ [ 121/ 219] blk.20.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
205
+
206
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
207
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
208
+ [ 122/ 219] blk.20.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
209
+ [ 123/ 219] blk.20.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
210
+ [ 124/ 219] blk.20.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
211
+ [ 125/ 219] blk.20.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
212
+ [ 126/ 219] blk.20.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
213
+ [ 127/ 219] blk.20.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
214
+ [ 128/ 219] blk.20.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
215
+ [ 129/ 219] blk.21.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
216
+ [ 130/ 219] blk.21.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
217
+
218
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
219
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
220
+ [ 131/ 219] blk.21.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
221
+ [ 132/ 219] blk.21.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
222
+ [ 133/ 219] blk.21.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
223
+ [ 134/ 219] blk.21.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
224
+ [ 135/ 219] blk.21.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
225
+ [ 136/ 219] blk.21.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
226
+ [ 137/ 219] blk.21.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
227
+ [ 138/ 219] blk.22.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
228
+ [ 139/ 219] blk.22.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
229
+
230
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
231
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
232
+ [ 140/ 219] blk.22.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
233
+ [ 141/ 219] blk.22.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
234
+ [ 142/ 219] blk.22.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
235
+ [ 143/ 219] blk.22.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
236
+ [ 144/ 219] blk.22.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
237
+ [ 145/ 219] blk.22.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
238
+ [ 146/ 219] blk.22.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
239
+ [ 147/ 219] blk.23.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
240
+ [ 148/ 219] blk.23.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
241
+
242
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
243
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
244
+ [ 149/ 219] blk.23.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
245
+ [ 150/ 219] blk.23.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
246
+ [ 151/ 219] blk.23.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
247
+ [ 152/ 219] blk.23.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
248
+ [ 153/ 219] blk.23.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
249
+ [ 154/ 219] blk.23.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
250
+ [ 155/ 219] blk.23.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
251
+ [ 156/ 219] blk.3.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
252
+ [ 157/ 219] blk.3.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
253
+
254
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
255
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
256
+ [ 158/ 219] blk.3.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
257
+ [ 159/ 219] blk.3.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
258
+ [ 160/ 219] blk.3.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
259
+ [ 161/ 219] blk.3.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
260
+ [ 162/ 219] blk.3.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
261
+ [ 163/ 219] blk.3.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
262
+ [ 164/ 219] blk.3.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
263
+ [ 165/ 219] blk.4.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
264
+ [ 166/ 219] blk.4.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
265
+
266
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
267
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
268
+ [ 167/ 219] blk.4.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
269
+ [ 168/ 219] blk.4.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
270
+ [ 169/ 219] blk.4.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
271
+ [ 170/ 219] blk.4.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
272
+ [ 171/ 219] blk.4.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
273
+ [ 172/ 219] blk.4.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
274
+ [ 173/ 219] blk.4.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
275
+ [ 174/ 219] blk.5.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
276
+ [ 175/ 219] blk.5.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
277
+
278
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
279
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
280
+ [ 176/ 219] blk.5.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
281
+ [ 177/ 219] blk.5.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
282
+ [ 178/ 219] blk.5.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
283
+ [ 179/ 219] blk.5.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
284
+ [ 180/ 219] blk.5.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
285
+ [ 181/ 219] blk.5.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
286
+ [ 182/ 219] blk.5.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
287
+ [ 183/ 219] blk.6.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
288
+ [ 184/ 219] blk.6.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
289
+
290
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
291
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
292
+ [ 185/ 219] blk.6.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
293
+ [ 186/ 219] blk.6.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
294
+ [ 187/ 219] blk.6.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
295
+ [ 188/ 219] blk.6.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
296
+ [ 189/ 219] blk.6.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
297
+ [ 190/ 219] blk.6.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
298
+ [ 191/ 219] blk.6.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
299
+ [ 192/ 219] blk.7.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
300
+ [ 193/ 219] blk.7.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
301
+
302
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
303
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
304
+ [ 194/ 219] blk.7.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
305
+ [ 195/ 219] blk.7.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
306
+ [ 196/ 219] blk.7.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
307
+ [ 197/ 219] blk.7.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
308
+ [ 198/ 219] blk.7.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
309
+ [ 199/ 219] blk.7.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
310
+ [ 200/ 219] blk.7.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
311
+ [ 201/ 219] blk.8.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
312
+ [ 202/ 219] blk.8.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
313
+
314
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
315
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
316
+ [ 203/ 219] blk.8.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
317
+ [ 204/ 219] blk.8.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
318
+ [ 205/ 219] blk.8.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
319
+ [ 206/ 219] blk.8.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
320
+ [ 207/ 219] blk.8.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
321
+ [ 208/ 219] blk.8.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
322
+ [ 209/ 219] blk.8.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
323
+ [ 210/ 219] blk.9.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
324
+ [ 211/ 219] blk.9.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
325
+
326
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq2_xs - using fallback quantization iq4_nl
327
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
328
+ [ 212/ 219] blk.9.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
329
+ [ 213/ 219] blk.9.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq2_xs .. size = 21.25 MiB -> 3.07 MiB
330
+ [ 214/ 219] blk.9.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
331
+ [ 215/ 219] blk.9.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
332
+ [ 216/ 219] blk.9.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
333
+ [ 217/ 219] blk.9.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq2_xs .. size = 8.00 MiB -> 1.16 MiB
334
+ [ 218/ 219] blk.9.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
335
+ [ 219/ 219] output_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
336
+ llama_model_quantize_internal: model size = 4298.38 MB
337
+ llama_model_quantize_internal: quant size = 1644.09 MB
338
+ llama_model_quantize_internal: WARNING: 24 of 169 tensor(s) required fallback quantization
339
+
340
+ main: quantize time = 36947.58 ms
341
+ main: total time = 36947.58 ms
IQ3_M_log.txt ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ main: build = 3906 (7eee341b)
2
+ main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
3
+ main: quantizing 'salamandra-2b-instruct_bf16.gguf' to './salamandra-2b-instruct_IQ3_M.gguf' as IQ3_M
4
+ llama_model_loader: loaded meta data with 31 key-value pairs and 219 tensors from salamandra-2b-instruct_bf16.gguf (version GGUF V3 (latest))
5
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
6
+ llama_model_loader: - kv 0: general.architecture str = llama
7
+ llama_model_loader: - kv 1: general.type str = model
8
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
9
+ llama_model_loader: - kv 3: general.license str = apache-2.0
10
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
11
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
12
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
13
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
14
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
15
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
16
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
17
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
18
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
19
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
20
+ llama_model_loader: - kv 14: general.file_type u32 = 32
21
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
22
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
23
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
24
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
25
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
26
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
27
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
28
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
29
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
30
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
31
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
32
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
33
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
34
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
35
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
36
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
37
+ llama_model_loader: - type f32: 49 tensors
38
+ llama_model_loader: - type bf16: 170 tensors
39
+ ================================ Have weights data with 168 entries
40
+ [ 1/ 219] output.weight - [ 2048, 256000, 1, 1], type = bf16, size = 1000.000 MB
41
+ [ 2/ 219] token_embd.weight - [ 2048, 256000, 1, 1], type = bf16,
42
+ ====== llama_model_quantize_internal: did not find weights for token_embd.weight
43
+ converting to iq3_s .. load_imatrix: imatrix dataset='./imatrix/oscar/imatrix-dataset.txt'
44
+ load_imatrix: loaded 168 importance matrix entries from imatrix/oscar/imatrix.dat computed on 44176 chunks
45
+ prepare_imatrix: have 168 importance matrix entries
46
+ size = 1000.00 MiB -> 214.84 MiB
47
+ [ 3/ 219] blk.0.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
48
+ [ 4/ 219] blk.0.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
49
+
50
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
51
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
52
+ [ 5/ 219] blk.0.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
53
+ [ 6/ 219] blk.0.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
54
+ [ 7/ 219] blk.0.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
55
+ [ 8/ 219] blk.0.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
56
+ [ 9/ 219] blk.0.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
57
+ [ 10/ 219] blk.0.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
58
+ [ 11/ 219] blk.0.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
59
+ [ 12/ 219] blk.1.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
60
+ [ 13/ 219] blk.1.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
61
+
62
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
63
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
64
+ [ 14/ 219] blk.1.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
65
+ [ 15/ 219] blk.1.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
66
+ [ 16/ 219] blk.1.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
67
+ [ 17/ 219] blk.1.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
68
+ [ 18/ 219] blk.1.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
69
+ [ 19/ 219] blk.1.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
70
+ [ 20/ 219] blk.1.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
71
+ [ 21/ 219] blk.10.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
72
+ [ 22/ 219] blk.10.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
73
+
74
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
75
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
76
+ [ 23/ 219] blk.10.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
77
+ [ 24/ 219] blk.10.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
78
+ [ 25/ 219] blk.10.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
79
+ [ 26/ 219] blk.10.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
80
+ [ 27/ 219] blk.10.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
81
+ [ 28/ 219] blk.10.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
82
+ [ 29/ 219] blk.10.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
83
+ [ 30/ 219] blk.11.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
84
+ [ 31/ 219] blk.11.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
85
+
86
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
87
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
88
+ [ 32/ 219] blk.11.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
89
+ [ 33/ 219] blk.11.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
90
+ [ 34/ 219] blk.11.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
91
+ [ 35/ 219] blk.11.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
92
+ [ 36/ 219] blk.11.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
93
+ [ 37/ 219] blk.11.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
94
+ [ 38/ 219] blk.11.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
95
+ [ 39/ 219] blk.12.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
96
+ [ 40/ 219] blk.12.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
97
+
98
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
99
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
100
+ [ 41/ 219] blk.12.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
101
+ [ 42/ 219] blk.12.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
102
+ [ 43/ 219] blk.12.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
103
+ [ 44/ 219] blk.12.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
104
+ [ 45/ 219] blk.12.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
105
+ [ 46/ 219] blk.12.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
106
+ [ 47/ 219] blk.12.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
107
+ [ 48/ 219] blk.13.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
108
+ [ 49/ 219] blk.13.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
109
+
110
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
111
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
112
+ [ 50/ 219] blk.13.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
113
+ [ 51/ 219] blk.13.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
114
+ [ 52/ 219] blk.13.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
115
+ [ 53/ 219] blk.13.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
116
+ [ 54/ 219] blk.13.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
117
+ [ 55/ 219] blk.13.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
118
+ [ 56/ 219] blk.13.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
119
+ [ 57/ 219] blk.14.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
120
+ [ 58/ 219] blk.14.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
121
+
122
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
123
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
124
+ [ 59/ 219] blk.14.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
125
+ [ 60/ 219] blk.14.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
126
+ [ 61/ 219] blk.14.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
127
+ [ 62/ 219] blk.14.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
128
+ [ 63/ 219] blk.14.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
129
+ [ 64/ 219] blk.14.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
130
+ [ 65/ 219] blk.14.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
131
+ [ 66/ 219] blk.15.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
132
+ [ 67/ 219] blk.15.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
133
+
134
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
135
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
136
+ [ 68/ 219] blk.15.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
137
+ [ 69/ 219] blk.15.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
138
+ [ 70/ 219] blk.15.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
139
+ [ 71/ 219] blk.15.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
140
+ [ 72/ 219] blk.15.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
141
+ [ 73/ 219] blk.15.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
142
+ [ 74/ 219] blk.15.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
143
+ [ 75/ 219] blk.16.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
144
+ [ 76/ 219] blk.16.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
145
+
146
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
147
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
148
+ [ 77/ 219] blk.16.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
149
+ [ 78/ 219] blk.16.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
150
+ [ 79/ 219] blk.16.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
151
+ [ 80/ 219] blk.16.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
152
+ [ 81/ 219] blk.16.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
153
+ [ 82/ 219] blk.16.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
154
+ [ 83/ 219] blk.16.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
155
+ [ 84/ 219] blk.17.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
156
+ [ 85/ 219] blk.17.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
157
+
158
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
159
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
160
+ [ 86/ 219] blk.17.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
161
+ [ 87/ 219] blk.17.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
162
+ [ 88/ 219] blk.17.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
163
+ [ 89/ 219] blk.17.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
164
+ [ 90/ 219] blk.17.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
165
+ [ 91/ 219] blk.17.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
166
+ [ 92/ 219] blk.17.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
167
+ [ 93/ 219] blk.18.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
168
+ [ 94/ 219] blk.18.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
169
+
170
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
171
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
172
+ [ 95/ 219] blk.18.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
173
+ [ 96/ 219] blk.18.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
174
+ [ 97/ 219] blk.18.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
175
+ [ 98/ 219] blk.18.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
176
+ [ 99/ 219] blk.18.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
177
+ [ 100/ 219] blk.18.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
178
+ [ 101/ 219] blk.18.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
179
+ [ 102/ 219] blk.19.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
180
+ [ 103/ 219] blk.19.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
181
+
182
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
183
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
184
+ [ 104/ 219] blk.19.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
185
+ [ 105/ 219] blk.19.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
186
+ [ 106/ 219] blk.19.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
187
+ [ 107/ 219] blk.19.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
188
+ [ 108/ 219] blk.19.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
189
+ [ 109/ 219] blk.19.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
190
+ [ 110/ 219] blk.19.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
191
+ [ 111/ 219] blk.2.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
192
+ [ 112/ 219] blk.2.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
193
+
194
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
195
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
196
+ [ 113/ 219] blk.2.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
197
+ [ 114/ 219] blk.2.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
198
+ [ 115/ 219] blk.2.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
199
+ [ 116/ 219] blk.2.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
200
+ [ 117/ 219] blk.2.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
201
+ [ 118/ 219] blk.2.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
202
+ [ 119/ 219] blk.2.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
203
+ [ 120/ 219] blk.20.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
204
+ [ 121/ 219] blk.20.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
205
+
206
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
207
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
208
+ [ 122/ 219] blk.20.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
209
+ [ 123/ 219] blk.20.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
210
+ [ 124/ 219] blk.20.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
211
+ [ 125/ 219] blk.20.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
212
+ [ 126/ 219] blk.20.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
213
+ [ 127/ 219] blk.20.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
214
+ [ 128/ 219] blk.20.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
215
+ [ 129/ 219] blk.21.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
216
+ [ 130/ 219] blk.21.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
217
+
218
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
219
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
220
+ [ 131/ 219] blk.21.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
221
+ [ 132/ 219] blk.21.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
222
+ [ 133/ 219] blk.21.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
223
+ [ 134/ 219] blk.21.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
224
+ [ 135/ 219] blk.21.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
225
+ [ 136/ 219] blk.21.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
226
+ [ 137/ 219] blk.21.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
227
+ [ 138/ 219] blk.22.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
228
+ [ 139/ 219] blk.22.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
229
+
230
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
231
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
232
+ [ 140/ 219] blk.22.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
233
+ [ 141/ 219] blk.22.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
234
+ [ 142/ 219] blk.22.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
235
+ [ 143/ 219] blk.22.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
236
+ [ 144/ 219] blk.22.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
237
+ [ 145/ 219] blk.22.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
238
+ [ 146/ 219] blk.22.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
239
+ [ 147/ 219] blk.23.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
240
+ [ 148/ 219] blk.23.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
241
+
242
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
243
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
244
+ [ 149/ 219] blk.23.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
245
+ [ 150/ 219] blk.23.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
246
+ [ 151/ 219] blk.23.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
247
+ [ 152/ 219] blk.23.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
248
+ [ 153/ 219] blk.23.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
249
+ [ 154/ 219] blk.23.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
250
+ [ 155/ 219] blk.23.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
251
+ [ 156/ 219] blk.3.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
252
+ [ 157/ 219] blk.3.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
253
+
254
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
255
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
256
+ [ 158/ 219] blk.3.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
257
+ [ 159/ 219] blk.3.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
258
+ [ 160/ 219] blk.3.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
259
+ [ 161/ 219] blk.3.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
260
+ [ 162/ 219] blk.3.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
261
+ [ 163/ 219] blk.3.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
262
+ [ 164/ 219] blk.3.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
263
+ [ 165/ 219] blk.4.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
264
+ [ 166/ 219] blk.4.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
265
+
266
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
267
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
268
+ [ 167/ 219] blk.4.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
269
+ [ 168/ 219] blk.4.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
270
+ [ 169/ 219] blk.4.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
271
+ [ 170/ 219] blk.4.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
272
+ [ 171/ 219] blk.4.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
273
+ [ 172/ 219] blk.4.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
274
+ [ 173/ 219] blk.4.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
275
+ [ 174/ 219] blk.5.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
276
+ [ 175/ 219] blk.5.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
277
+
278
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
279
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
280
+ [ 176/ 219] blk.5.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
281
+ [ 177/ 219] blk.5.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
282
+ [ 178/ 219] blk.5.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
283
+ [ 179/ 219] blk.5.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
284
+ [ 180/ 219] blk.5.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
285
+ [ 181/ 219] blk.5.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
286
+ [ 182/ 219] blk.5.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
287
+ [ 183/ 219] blk.6.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
288
+ [ 184/ 219] blk.6.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
289
+
290
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
291
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
292
+ [ 185/ 219] blk.6.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
293
+ [ 186/ 219] blk.6.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
294
+ [ 187/ 219] blk.6.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
295
+ [ 188/ 219] blk.6.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
296
+ [ 189/ 219] blk.6.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
297
+ [ 190/ 219] blk.6.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
298
+ [ 191/ 219] blk.6.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
299
+ [ 192/ 219] blk.7.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
300
+ [ 193/ 219] blk.7.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
301
+
302
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
303
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
304
+ [ 194/ 219] blk.7.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
305
+ [ 195/ 219] blk.7.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
306
+ [ 196/ 219] blk.7.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
307
+ [ 197/ 219] blk.7.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
308
+ [ 198/ 219] blk.7.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
309
+ [ 199/ 219] blk.7.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
310
+ [ 200/ 219] blk.7.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
311
+ [ 201/ 219] blk.8.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
312
+ [ 202/ 219] blk.8.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
313
+
314
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
315
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
316
+ [ 203/ 219] blk.8.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
317
+ [ 204/ 219] blk.8.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
318
+ [ 205/ 219] blk.8.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
319
+ [ 206/ 219] blk.8.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
320
+ [ 207/ 219] blk.8.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
321
+ [ 208/ 219] blk.8.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
322
+ [ 209/ 219] blk.8.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
323
+ [ 210/ 219] blk.9.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
324
+ [ 211/ 219] blk.9.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
325
+
326
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq3_s - using fallback quantization iq4_nl
327
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
328
+ [ 212/ 219] blk.9.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
329
+ [ 213/ 219] blk.9.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq3_s .. size = 21.25 MiB -> 4.57 MiB
330
+ [ 214/ 219] blk.9.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
331
+ [ 215/ 219] blk.9.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
332
+ [ 216/ 219] blk.9.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
333
+ [ 217/ 219] blk.9.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq3_s .. size = 8.00 MiB -> 1.72 MiB
334
+ [ 218/ 219] blk.9.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
335
+ [ 219/ 219] output_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
336
+ llama_model_quantize_internal: model size = 4298.38 MB
337
+ llama_model_quantize_internal: quant size = 1772.29 MB
338
+ llama_model_quantize_internal: WARNING: 24 of 169 tensor(s) required fallback quantization
339
+
340
+ main: quantize time = 20033.18 ms
341
+ main: total time = 20033.18 ms
IQ4_NL_log.txt ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ main: build = 3906 (7eee341b)
2
+ main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
3
+ main: quantizing 'salamandra-2b-instruct_bf16.gguf' to './salamandra-2b-instruct_IQ4_NL.gguf' as IQ4_NL
4
+ llama_model_loader: loaded meta data with 31 key-value pairs and 219 tensors from salamandra-2b-instruct_bf16.gguf (version GGUF V3 (latest))
5
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
6
+ llama_model_loader: - kv 0: general.architecture str = llama
7
+ llama_model_loader: - kv 1: general.type str = model
8
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
9
+ llama_model_loader: - kv 3: general.license str = apache-2.0
10
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
11
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
12
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
13
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
14
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
15
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
16
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
17
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
18
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
19
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
20
+ llama_model_loader: - kv 14: general.file_type u32 = 32
21
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
22
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
23
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
24
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
25
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
26
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
27
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
28
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
29
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
30
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
31
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
32
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
33
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
34
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
35
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
36
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
37
+ llama_model_loader: - type f32: 49 tensors
38
+ llama_model_loader: - type bf16: 170 tensors
39
+ ================================ Have weights data with 168 entries
40
+ [ 1/ 219] output.weight - [ 2048, 256000, 1, 1], type = bf16, size = 1000.000 MB
41
+ [ 2/ 219] token_embd.weight - [ 2048, 256000, 1, 1], type = bf16,
42
+ ====== llama_model_quantize_internal: did not find weights for token_embd.weight
43
+ converting to iq4_nl .. load_imatrix: imatrix dataset='./imatrix/oscar/imatrix-dataset.txt'
44
+ load_imatrix: loaded 168 importance matrix entries from imatrix/oscar/imatrix.dat computed on 44176 chunks
45
+ prepare_imatrix: have 168 importance matrix entries
46
+ size = 1000.00 MiB -> 281.25 MiB
47
+ [ 3/ 219] blk.0.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
48
+ [ 4/ 219] blk.0.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
49
+ [ 5/ 219] blk.0.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
50
+ [ 6/ 219] blk.0.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
51
+ [ 7/ 219] blk.0.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
52
+ [ 8/ 219] blk.0.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
53
+ [ 9/ 219] blk.0.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
54
+ [ 10/ 219] blk.0.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
55
+ [ 11/ 219] blk.0.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
56
+ [ 12/ 219] blk.1.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
57
+ [ 13/ 219] blk.1.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
58
+ [ 14/ 219] blk.1.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
59
+ [ 15/ 219] blk.1.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
60
+ [ 16/ 219] blk.1.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
61
+ [ 17/ 219] blk.1.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
62
+ [ 18/ 219] blk.1.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
63
+ [ 19/ 219] blk.1.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
64
+ [ 20/ 219] blk.1.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
65
+ [ 21/ 219] blk.10.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
66
+ [ 22/ 219] blk.10.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
67
+ [ 23/ 219] blk.10.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
68
+ [ 24/ 219] blk.10.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
69
+ [ 25/ 219] blk.10.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
70
+ [ 26/ 219] blk.10.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
71
+ [ 27/ 219] blk.10.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
72
+ [ 28/ 219] blk.10.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
73
+ [ 29/ 219] blk.10.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
74
+ [ 30/ 219] blk.11.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
75
+ [ 31/ 219] blk.11.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
76
+ [ 32/ 219] blk.11.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
77
+ [ 33/ 219] blk.11.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
78
+ [ 34/ 219] blk.11.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
79
+ [ 35/ 219] blk.11.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
80
+ [ 36/ 219] blk.11.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
81
+ [ 37/ 219] blk.11.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
82
+ [ 38/ 219] blk.11.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
83
+ [ 39/ 219] blk.12.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
84
+ [ 40/ 219] blk.12.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
85
+ [ 41/ 219] blk.12.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
86
+ [ 42/ 219] blk.12.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
87
+ [ 43/ 219] blk.12.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
88
+ [ 44/ 219] blk.12.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
89
+ [ 45/ 219] blk.12.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
90
+ [ 46/ 219] blk.12.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
91
+ [ 47/ 219] blk.12.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
92
+ [ 48/ 219] blk.13.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
93
+ [ 49/ 219] blk.13.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
94
+ [ 50/ 219] blk.13.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
95
+ [ 51/ 219] blk.13.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
96
+ [ 52/ 219] blk.13.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
97
+ [ 53/ 219] blk.13.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
98
+ [ 54/ 219] blk.13.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
99
+ [ 55/ 219] blk.13.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
100
+ [ 56/ 219] blk.13.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
101
+ [ 57/ 219] blk.14.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
102
+ [ 58/ 219] blk.14.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
103
+ [ 59/ 219] blk.14.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
104
+ [ 60/ 219] blk.14.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
105
+ [ 61/ 219] blk.14.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
106
+ [ 62/ 219] blk.14.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
107
+ [ 63/ 219] blk.14.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
108
+ [ 64/ 219] blk.14.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
109
+ [ 65/ 219] blk.14.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
110
+ [ 66/ 219] blk.15.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
111
+ [ 67/ 219] blk.15.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
112
+ [ 68/ 219] blk.15.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
113
+ [ 69/ 219] blk.15.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
114
+ [ 70/ 219] blk.15.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
115
+ [ 71/ 219] blk.15.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
116
+ [ 72/ 219] blk.15.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
117
+ [ 73/ 219] blk.15.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
118
+ [ 74/ 219] blk.15.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
119
+ [ 75/ 219] blk.16.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
120
+ [ 76/ 219] blk.16.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
121
+ [ 77/ 219] blk.16.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
122
+ [ 78/ 219] blk.16.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
123
+ [ 79/ 219] blk.16.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
124
+ [ 80/ 219] blk.16.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
125
+ [ 81/ 219] blk.16.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
126
+ [ 82/ 219] blk.16.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
127
+ [ 83/ 219] blk.16.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
128
+ [ 84/ 219] blk.17.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
129
+ [ 85/ 219] blk.17.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
130
+ [ 86/ 219] blk.17.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
131
+ [ 87/ 219] blk.17.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
132
+ [ 88/ 219] blk.17.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
133
+ [ 89/ 219] blk.17.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
134
+ [ 90/ 219] blk.17.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
135
+ [ 91/ 219] blk.17.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
136
+ [ 92/ 219] blk.17.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
137
+ [ 93/ 219] blk.18.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
138
+ [ 94/ 219] blk.18.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
139
+ [ 95/ 219] blk.18.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
140
+ [ 96/ 219] blk.18.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
141
+ [ 97/ 219] blk.18.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
142
+ [ 98/ 219] blk.18.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
143
+ [ 99/ 219] blk.18.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
144
+ [ 100/ 219] blk.18.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
145
+ [ 101/ 219] blk.18.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
146
+ [ 102/ 219] blk.19.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
147
+ [ 103/ 219] blk.19.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
148
+ [ 104/ 219] blk.19.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
149
+ [ 105/ 219] blk.19.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
150
+ [ 106/ 219] blk.19.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
151
+ [ 107/ 219] blk.19.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
152
+ [ 108/ 219] blk.19.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
153
+ [ 109/ 219] blk.19.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
154
+ [ 110/ 219] blk.19.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
155
+ [ 111/ 219] blk.2.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
156
+ [ 112/ 219] blk.2.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
157
+ [ 113/ 219] blk.2.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
158
+ [ 114/ 219] blk.2.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
159
+ [ 115/ 219] blk.2.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
160
+ [ 116/ 219] blk.2.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
161
+ [ 117/ 219] blk.2.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
162
+ [ 118/ 219] blk.2.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
163
+ [ 119/ 219] blk.2.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
164
+ [ 120/ 219] blk.20.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
165
+ [ 121/ 219] blk.20.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
166
+ [ 122/ 219] blk.20.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
167
+ [ 123/ 219] blk.20.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
168
+ [ 124/ 219] blk.20.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
169
+ [ 125/ 219] blk.20.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
170
+ [ 126/ 219] blk.20.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
171
+ [ 127/ 219] blk.20.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
172
+ [ 128/ 219] blk.20.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
173
+ [ 129/ 219] blk.21.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
174
+ [ 130/ 219] blk.21.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
175
+ [ 131/ 219] blk.21.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
176
+ [ 132/ 219] blk.21.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
177
+ [ 133/ 219] blk.21.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
178
+ [ 134/ 219] blk.21.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
179
+ [ 135/ 219] blk.21.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
180
+ [ 136/ 219] blk.21.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
181
+ [ 137/ 219] blk.21.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
182
+ [ 138/ 219] blk.22.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
183
+ [ 139/ 219] blk.22.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
184
+ [ 140/ 219] blk.22.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
185
+ [ 141/ 219] blk.22.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
186
+ [ 142/ 219] blk.22.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
187
+ [ 143/ 219] blk.22.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
188
+ [ 144/ 219] blk.22.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
189
+ [ 145/ 219] blk.22.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
190
+ [ 146/ 219] blk.22.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
191
+ [ 147/ 219] blk.23.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
192
+ [ 148/ 219] blk.23.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
193
+ [ 149/ 219] blk.23.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
194
+ [ 150/ 219] blk.23.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
195
+ [ 151/ 219] blk.23.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
196
+ [ 152/ 219] blk.23.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
197
+ [ 153/ 219] blk.23.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
198
+ [ 154/ 219] blk.23.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
199
+ [ 155/ 219] blk.23.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
200
+ [ 156/ 219] blk.3.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
201
+ [ 157/ 219] blk.3.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
202
+ [ 158/ 219] blk.3.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
203
+ [ 159/ 219] blk.3.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
204
+ [ 160/ 219] blk.3.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
205
+ [ 161/ 219] blk.3.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
206
+ [ 162/ 219] blk.3.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
207
+ [ 163/ 219] blk.3.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
208
+ [ 164/ 219] blk.3.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
209
+ [ 165/ 219] blk.4.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
210
+ [ 166/ 219] blk.4.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
211
+ [ 167/ 219] blk.4.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
212
+ [ 168/ 219] blk.4.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
213
+ [ 169/ 219] blk.4.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
214
+ [ 170/ 219] blk.4.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
215
+ [ 171/ 219] blk.4.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
216
+ [ 172/ 219] blk.4.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
217
+ [ 173/ 219] blk.4.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
218
+ [ 174/ 219] blk.5.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
219
+ [ 175/ 219] blk.5.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
220
+ [ 176/ 219] blk.5.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
221
+ [ 177/ 219] blk.5.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
222
+ [ 178/ 219] blk.5.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
223
+ [ 179/ 219] blk.5.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
224
+ [ 180/ 219] blk.5.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
225
+ [ 181/ 219] blk.5.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
226
+ [ 182/ 219] blk.5.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
227
+ [ 183/ 219] blk.6.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
228
+ [ 184/ 219] blk.6.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
229
+ [ 185/ 219] blk.6.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
230
+ [ 186/ 219] blk.6.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
231
+ [ 187/ 219] blk.6.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
232
+ [ 188/ 219] blk.6.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
233
+ [ 189/ 219] blk.6.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
234
+ [ 190/ 219] blk.6.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
235
+ [ 191/ 219] blk.6.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
236
+ [ 192/ 219] blk.7.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
237
+ [ 193/ 219] blk.7.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
238
+ [ 194/ 219] blk.7.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
239
+ [ 195/ 219] blk.7.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
240
+ [ 196/ 219] blk.7.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
241
+ [ 197/ 219] blk.7.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
242
+ [ 198/ 219] blk.7.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
243
+ [ 199/ 219] blk.7.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
244
+ [ 200/ 219] blk.7.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
245
+ [ 201/ 219] blk.8.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
246
+ [ 202/ 219] blk.8.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
247
+ [ 203/ 219] blk.8.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
248
+ [ 204/ 219] blk.8.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
249
+ [ 205/ 219] blk.8.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
250
+ [ 206/ 219] blk.8.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
251
+ [ 207/ 219] blk.8.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
252
+ [ 208/ 219] blk.8.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
253
+ [ 209/ 219] blk.8.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
254
+ [ 210/ 219] blk.9.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
255
+ [ 211/ 219] blk.9.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
256
+ [ 212/ 219] blk.9.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
257
+ [ 213/ 219] blk.9.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
258
+ [ 214/ 219] blk.9.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
259
+ [ 215/ 219] blk.9.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
260
+ [ 216/ 219] blk.9.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
261
+ [ 217/ 219] blk.9.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
262
+ [ 218/ 219] blk.9.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_nl .. size = 8.00 MiB -> 2.25 MiB
263
+ [ 219/ 219] output_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
264
+ llama_model_quantize_internal: model size = 4298.38 MB
265
+ llama_model_quantize_internal: quant size = 1927.95 MB
266
+
267
+ main: quantize time = 17815.41 ms
268
+ main: total time = 17815.41 ms
IQ4_XS_log.txt ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ main: build = 3906 (7eee341b)
2
+ main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
3
+ main: quantizing 'salamandra-2b-instruct_bf16.gguf' to './salamandra-2b-instruct_IQ4_XS.gguf' as IQ4_XS
4
+ llama_model_loader: loaded meta data with 31 key-value pairs and 219 tensors from salamandra-2b-instruct_bf16.gguf (version GGUF V3 (latest))
5
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
6
+ llama_model_loader: - kv 0: general.architecture str = llama
7
+ llama_model_loader: - kv 1: general.type str = model
8
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
9
+ llama_model_loader: - kv 3: general.license str = apache-2.0
10
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
11
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
12
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
13
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
14
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
15
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
16
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
17
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
18
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
19
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
20
+ llama_model_loader: - kv 14: general.file_type u32 = 32
21
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
22
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
23
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
24
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
25
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
26
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
27
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
28
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
29
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
30
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
31
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
32
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
33
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
34
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
35
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
36
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
37
+ llama_model_loader: - type f32: 49 tensors
38
+ llama_model_loader: - type bf16: 170 tensors
39
+ ================================ Have weights data with 168 entries
40
+ [ 1/ 219] output.weight - [ 2048, 256000, 1, 1], type = bf16, size = 1000.000 MB
41
+ [ 2/ 219] token_embd.weight - [ 2048, 256000, 1, 1], type = bf16,
42
+ ====== llama_model_quantize_internal: did not find weights for token_embd.weight
43
+ converting to iq4_xs .. load_imatrix: imatrix dataset='./imatrix/oscar/imatrix-dataset.txt'
44
+ load_imatrix: loaded 168 importance matrix entries from imatrix/oscar/imatrix.dat computed on 44176 chunks
45
+ prepare_imatrix: have 168 importance matrix entries
46
+ size = 1000.00 MiB -> 265.62 MiB
47
+ [ 3/ 219] blk.0.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
48
+ [ 4/ 219] blk.0.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
49
+
50
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
51
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
52
+ [ 5/ 219] blk.0.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
53
+ [ 6/ 219] blk.0.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
54
+ [ 7/ 219] blk.0.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
55
+ [ 8/ 219] blk.0.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
56
+ [ 9/ 219] blk.0.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
57
+ [ 10/ 219] blk.0.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
58
+ [ 11/ 219] blk.0.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
59
+ [ 12/ 219] blk.1.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
60
+ [ 13/ 219] blk.1.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
61
+
62
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
63
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
64
+ [ 14/ 219] blk.1.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
65
+ [ 15/ 219] blk.1.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
66
+ [ 16/ 219] blk.1.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
67
+ [ 17/ 219] blk.1.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
68
+ [ 18/ 219] blk.1.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
69
+ [ 19/ 219] blk.1.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
70
+ [ 20/ 219] blk.1.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
71
+ [ 21/ 219] blk.10.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
72
+ [ 22/ 219] blk.10.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
73
+
74
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
75
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
76
+ [ 23/ 219] blk.10.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
77
+ [ 24/ 219] blk.10.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
78
+ [ 25/ 219] blk.10.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
79
+ [ 26/ 219] blk.10.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
80
+ [ 27/ 219] blk.10.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
81
+ [ 28/ 219] blk.10.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
82
+ [ 29/ 219] blk.10.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
83
+ [ 30/ 219] blk.11.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
84
+ [ 31/ 219] blk.11.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
85
+
86
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
87
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
88
+ [ 32/ 219] blk.11.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
89
+ [ 33/ 219] blk.11.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
90
+ [ 34/ 219] blk.11.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
91
+ [ 35/ 219] blk.11.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
92
+ [ 36/ 219] blk.11.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
93
+ [ 37/ 219] blk.11.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
94
+ [ 38/ 219] blk.11.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
95
+ [ 39/ 219] blk.12.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
96
+ [ 40/ 219] blk.12.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
97
+
98
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
99
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
100
+ [ 41/ 219] blk.12.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
101
+ [ 42/ 219] blk.12.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
102
+ [ 43/ 219] blk.12.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
103
+ [ 44/ 219] blk.12.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
104
+ [ 45/ 219] blk.12.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
105
+ [ 46/ 219] blk.12.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
106
+ [ 47/ 219] blk.12.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
107
+ [ 48/ 219] blk.13.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
108
+ [ 49/ 219] blk.13.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
109
+
110
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
111
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
112
+ [ 50/ 219] blk.13.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
113
+ [ 51/ 219] blk.13.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
114
+ [ 52/ 219] blk.13.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
115
+ [ 53/ 219] blk.13.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
116
+ [ 54/ 219] blk.13.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
117
+ [ 55/ 219] blk.13.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
118
+ [ 56/ 219] blk.13.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
119
+ [ 57/ 219] blk.14.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
120
+ [ 58/ 219] blk.14.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
121
+
122
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
123
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
124
+ [ 59/ 219] blk.14.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
125
+ [ 60/ 219] blk.14.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
126
+ [ 61/ 219] blk.14.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
127
+ [ 62/ 219] blk.14.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
128
+ [ 63/ 219] blk.14.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
129
+ [ 64/ 219] blk.14.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
130
+ [ 65/ 219] blk.14.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
131
+ [ 66/ 219] blk.15.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
132
+ [ 67/ 219] blk.15.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
133
+
134
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
135
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
136
+ [ 68/ 219] blk.15.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
137
+ [ 69/ 219] blk.15.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
138
+ [ 70/ 219] blk.15.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
139
+ [ 71/ 219] blk.15.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
140
+ [ 72/ 219] blk.15.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
141
+ [ 73/ 219] blk.15.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
142
+ [ 74/ 219] blk.15.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
143
+ [ 75/ 219] blk.16.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
144
+ [ 76/ 219] blk.16.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
145
+
146
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
147
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
148
+ [ 77/ 219] blk.16.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
149
+ [ 78/ 219] blk.16.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
150
+ [ 79/ 219] blk.16.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
151
+ [ 80/ 219] blk.16.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
152
+ [ 81/ 219] blk.16.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
153
+ [ 82/ 219] blk.16.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
154
+ [ 83/ 219] blk.16.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
155
+ [ 84/ 219] blk.17.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
156
+ [ 85/ 219] blk.17.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
157
+
158
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
159
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
160
+ [ 86/ 219] blk.17.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
161
+ [ 87/ 219] blk.17.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
162
+ [ 88/ 219] blk.17.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
163
+ [ 89/ 219] blk.17.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
164
+ [ 90/ 219] blk.17.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
165
+ [ 91/ 219] blk.17.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
166
+ [ 92/ 219] blk.17.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
167
+ [ 93/ 219] blk.18.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
168
+ [ 94/ 219] blk.18.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
169
+
170
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
171
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
172
+ [ 95/ 219] blk.18.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
173
+ [ 96/ 219] blk.18.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
174
+ [ 97/ 219] blk.18.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
175
+ [ 98/ 219] blk.18.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
176
+ [ 99/ 219] blk.18.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
177
+ [ 100/ 219] blk.18.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
178
+ [ 101/ 219] blk.18.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
179
+ [ 102/ 219] blk.19.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
180
+ [ 103/ 219] blk.19.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
181
+
182
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
183
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
184
+ [ 104/ 219] blk.19.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
185
+ [ 105/ 219] blk.19.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
186
+ [ 106/ 219] blk.19.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
187
+ [ 107/ 219] blk.19.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
188
+ [ 108/ 219] blk.19.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
189
+ [ 109/ 219] blk.19.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
190
+ [ 110/ 219] blk.19.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
191
+ [ 111/ 219] blk.2.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
192
+ [ 112/ 219] blk.2.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
193
+
194
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
195
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
196
+ [ 113/ 219] blk.2.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
197
+ [ 114/ 219] blk.2.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
198
+ [ 115/ 219] blk.2.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
199
+ [ 116/ 219] blk.2.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
200
+ [ 117/ 219] blk.2.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
201
+ [ 118/ 219] blk.2.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
202
+ [ 119/ 219] blk.2.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
203
+ [ 120/ 219] blk.20.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
204
+ [ 121/ 219] blk.20.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
205
+
206
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
207
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
208
+ [ 122/ 219] blk.20.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
209
+ [ 123/ 219] blk.20.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
210
+ [ 124/ 219] blk.20.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
211
+ [ 125/ 219] blk.20.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
212
+ [ 126/ 219] blk.20.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
213
+ [ 127/ 219] blk.20.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
214
+ [ 128/ 219] blk.20.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
215
+ [ 129/ 219] blk.21.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
216
+ [ 130/ 219] blk.21.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
217
+
218
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
219
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
220
+ [ 131/ 219] blk.21.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
221
+ [ 132/ 219] blk.21.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
222
+ [ 133/ 219] blk.21.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
223
+ [ 134/ 219] blk.21.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
224
+ [ 135/ 219] blk.21.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
225
+ [ 136/ 219] blk.21.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
226
+ [ 137/ 219] blk.21.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
227
+ [ 138/ 219] blk.22.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
228
+ [ 139/ 219] blk.22.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
229
+
230
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
231
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
232
+ [ 140/ 219] blk.22.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
233
+ [ 141/ 219] blk.22.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
234
+ [ 142/ 219] blk.22.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
235
+ [ 143/ 219] blk.22.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
236
+ [ 144/ 219] blk.22.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
237
+ [ 145/ 219] blk.22.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
238
+ [ 146/ 219] blk.22.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
239
+ [ 147/ 219] blk.23.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
240
+ [ 148/ 219] blk.23.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
241
+
242
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
243
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
244
+ [ 149/ 219] blk.23.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
245
+ [ 150/ 219] blk.23.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
246
+ [ 151/ 219] blk.23.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
247
+ [ 152/ 219] blk.23.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
248
+ [ 153/ 219] blk.23.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
249
+ [ 154/ 219] blk.23.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
250
+ [ 155/ 219] blk.23.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
251
+ [ 156/ 219] blk.3.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
252
+ [ 157/ 219] blk.3.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
253
+
254
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
255
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
256
+ [ 158/ 219] blk.3.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
257
+ [ 159/ 219] blk.3.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
258
+ [ 160/ 219] blk.3.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
259
+ [ 161/ 219] blk.3.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
260
+ [ 162/ 219] blk.3.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
261
+ [ 163/ 219] blk.3.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
262
+ [ 164/ 219] blk.3.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
263
+ [ 165/ 219] blk.4.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
264
+ [ 166/ 219] blk.4.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
265
+
266
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
267
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
268
+ [ 167/ 219] blk.4.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
269
+ [ 168/ 219] blk.4.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
270
+ [ 169/ 219] blk.4.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
271
+ [ 170/ 219] blk.4.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
272
+ [ 171/ 219] blk.4.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
273
+ [ 172/ 219] blk.4.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
274
+ [ 173/ 219] blk.4.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
275
+ [ 174/ 219] blk.5.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
276
+ [ 175/ 219] blk.5.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
277
+
278
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
279
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
280
+ [ 176/ 219] blk.5.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
281
+ [ 177/ 219] blk.5.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
282
+ [ 178/ 219] blk.5.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
283
+ [ 179/ 219] blk.5.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
284
+ [ 180/ 219] blk.5.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
285
+ [ 181/ 219] blk.5.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
286
+ [ 182/ 219] blk.5.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
287
+ [ 183/ 219] blk.6.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
288
+ [ 184/ 219] blk.6.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
289
+
290
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
291
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
292
+ [ 185/ 219] blk.6.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
293
+ [ 186/ 219] blk.6.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
294
+ [ 187/ 219] blk.6.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
295
+ [ 188/ 219] blk.6.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
296
+ [ 189/ 219] blk.6.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
297
+ [ 190/ 219] blk.6.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
298
+ [ 191/ 219] blk.6.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
299
+ [ 192/ 219] blk.7.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
300
+ [ 193/ 219] blk.7.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
301
+
302
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
303
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
304
+ [ 194/ 219] blk.7.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
305
+ [ 195/ 219] blk.7.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
306
+ [ 196/ 219] blk.7.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
307
+ [ 197/ 219] blk.7.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
308
+ [ 198/ 219] blk.7.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
309
+ [ 199/ 219] blk.7.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
310
+ [ 200/ 219] blk.7.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
311
+ [ 201/ 219] blk.8.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
312
+ [ 202/ 219] blk.8.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
313
+
314
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
315
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
316
+ [ 203/ 219] blk.8.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
317
+ [ 204/ 219] blk.8.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
318
+ [ 205/ 219] blk.8.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
319
+ [ 206/ 219] blk.8.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
320
+ [ 207/ 219] blk.8.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
321
+ [ 208/ 219] blk.8.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
322
+ [ 209/ 219] blk.8.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
323
+ [ 210/ 219] blk.9.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
324
+ [ 211/ 219] blk.9.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
325
+
326
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for iq4_xs - using fallback quantization iq4_nl
327
+ converting to iq4_nl .. size = 21.25 MiB -> 5.98 MiB
328
+ [ 212/ 219] blk.9.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
329
+ [ 213/ 219] blk.9.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to iq4_xs .. size = 21.25 MiB -> 5.64 MiB
330
+ [ 214/ 219] blk.9.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
331
+ [ 215/ 219] blk.9.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
332
+ [ 216/ 219] blk.9.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
333
+ [ 217/ 219] blk.9.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
334
+ [ 218/ 219] blk.9.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to iq4_xs .. size = 8.00 MiB -> 2.12 MiB
335
+ [ 219/ 219] output_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
336
+ llama_model_quantize_internal: model size = 4298.38 MB
337
+ llama_model_quantize_internal: quant size = 1884.38 MB
338
+ llama_model_quantize_internal: WARNING: 24 of 169 tensor(s) required fallback quantization
339
+
340
+ main: quantize time = 17803.82 ms
341
+ main: total time = 17803.82 ms
Q3_K_L_log.txt ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ main: build = 3906 (7eee341b)
2
+ main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
3
+ main: quantizing 'salamandra-2b-instruct_bf16.gguf' to './salamandra-2b-instruct_Q3_K_L.gguf' as Q3_K_L
4
+ llama_model_loader: loaded meta data with 31 key-value pairs and 219 tensors from salamandra-2b-instruct_bf16.gguf (version GGUF V3 (latest))
5
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
6
+ llama_model_loader: - kv 0: general.architecture str = llama
7
+ llama_model_loader: - kv 1: general.type str = model
8
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
9
+ llama_model_loader: - kv 3: general.license str = apache-2.0
10
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
11
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
12
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
13
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
14
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
15
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
16
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
17
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
18
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
19
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
20
+ llama_model_loader: - kv 14: general.file_type u32 = 32
21
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
22
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
23
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
24
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
25
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
26
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
27
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
28
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
29
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
30
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
31
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
32
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
33
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
34
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
35
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
36
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
37
+ llama_model_loader: - type f32: 49 tensors
38
+ llama_model_loader: - type bf16: 170 tensors
39
+ ================================ Have weights data with 168 entries
40
+ [ 1/ 219] output.weight - [ 2048, 256000, 1, 1], type = bf16, size = 1000.000 MB
41
+ [ 2/ 219] token_embd.weight - [ 2048, 256000, 1, 1], type = bf16,
42
+ ====== llama_model_quantize_internal: did not find weights for token_embd.weight
43
+ converting to q3_K .. load_imatrix: imatrix dataset='./imatrix/oscar/imatrix-dataset.txt'
44
+ load_imatrix: loaded 168 importance matrix entries from imatrix/oscar/imatrix.dat computed on 44176 chunks
45
+ prepare_imatrix: have 168 importance matrix entries
46
+ size = 1000.00 MiB -> 214.84 MiB
47
+ [ 3/ 219] blk.0.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
48
+ [ 4/ 219] blk.0.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
49
+
50
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
51
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
52
+ [ 5/ 219] blk.0.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
53
+ [ 6/ 219] blk.0.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
54
+ [ 7/ 219] blk.0.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
55
+ [ 8/ 219] blk.0.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
56
+ [ 9/ 219] blk.0.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
57
+ [ 10/ 219] blk.0.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
58
+ [ 11/ 219] blk.0.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
59
+ [ 12/ 219] blk.1.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
60
+ [ 13/ 219] blk.1.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
61
+
62
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
63
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
64
+ [ 14/ 219] blk.1.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
65
+ [ 15/ 219] blk.1.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
66
+ [ 16/ 219] blk.1.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
67
+ [ 17/ 219] blk.1.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
68
+ [ 18/ 219] blk.1.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
69
+ [ 19/ 219] blk.1.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
70
+ [ 20/ 219] blk.1.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
71
+ [ 21/ 219] blk.10.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
72
+ [ 22/ 219] blk.10.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
73
+
74
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
75
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
76
+ [ 23/ 219] blk.10.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
77
+ [ 24/ 219] blk.10.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
78
+ [ 25/ 219] blk.10.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
79
+ [ 26/ 219] blk.10.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
80
+ [ 27/ 219] blk.10.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
81
+ [ 28/ 219] blk.10.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
82
+ [ 29/ 219] blk.10.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
83
+ [ 30/ 219] blk.11.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
84
+ [ 31/ 219] blk.11.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
85
+
86
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
87
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
88
+ [ 32/ 219] blk.11.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
89
+ [ 33/ 219] blk.11.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
90
+ [ 34/ 219] blk.11.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
91
+ [ 35/ 219] blk.11.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
92
+ [ 36/ 219] blk.11.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
93
+ [ 37/ 219] blk.11.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
94
+ [ 38/ 219] blk.11.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
95
+ [ 39/ 219] blk.12.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
96
+ [ 40/ 219] blk.12.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
97
+
98
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
99
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
100
+ [ 41/ 219] blk.12.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
101
+ [ 42/ 219] blk.12.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
102
+ [ 43/ 219] blk.12.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
103
+ [ 44/ 219] blk.12.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
104
+ [ 45/ 219] blk.12.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
105
+ [ 46/ 219] blk.12.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
106
+ [ 47/ 219] blk.12.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
107
+ [ 48/ 219] blk.13.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
108
+ [ 49/ 219] blk.13.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
109
+
110
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
111
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
112
+ [ 50/ 219] blk.13.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
113
+ [ 51/ 219] blk.13.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
114
+ [ 52/ 219] blk.13.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
115
+ [ 53/ 219] blk.13.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
116
+ [ 54/ 219] blk.13.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
117
+ [ 55/ 219] blk.13.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
118
+ [ 56/ 219] blk.13.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
119
+ [ 57/ 219] blk.14.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
120
+ [ 58/ 219] blk.14.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
121
+
122
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
123
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
124
+ [ 59/ 219] blk.14.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
125
+ [ 60/ 219] blk.14.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
126
+ [ 61/ 219] blk.14.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
127
+ [ 62/ 219] blk.14.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
128
+ [ 63/ 219] blk.14.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
129
+ [ 64/ 219] blk.14.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
130
+ [ 65/ 219] blk.14.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
131
+ [ 66/ 219] blk.15.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
132
+ [ 67/ 219] blk.15.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
133
+
134
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
135
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
136
+ [ 68/ 219] blk.15.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
137
+ [ 69/ 219] blk.15.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
138
+ [ 70/ 219] blk.15.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
139
+ [ 71/ 219] blk.15.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
140
+ [ 72/ 219] blk.15.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
141
+ [ 73/ 219] blk.15.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
142
+ [ 74/ 219] blk.15.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
143
+ [ 75/ 219] blk.16.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
144
+ [ 76/ 219] blk.16.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
145
+
146
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
147
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
148
+ [ 77/ 219] blk.16.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
149
+ [ 78/ 219] blk.16.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
150
+ [ 79/ 219] blk.16.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
151
+ [ 80/ 219] blk.16.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
152
+ [ 81/ 219] blk.16.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
153
+ [ 82/ 219] blk.16.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
154
+ [ 83/ 219] blk.16.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
155
+ [ 84/ 219] blk.17.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
156
+ [ 85/ 219] blk.17.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
157
+
158
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
159
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
160
+ [ 86/ 219] blk.17.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
161
+ [ 87/ 219] blk.17.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
162
+ [ 88/ 219] blk.17.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
163
+ [ 89/ 219] blk.17.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
164
+ [ 90/ 219] blk.17.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
165
+ [ 91/ 219] blk.17.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
166
+ [ 92/ 219] blk.17.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
167
+ [ 93/ 219] blk.18.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
168
+ [ 94/ 219] blk.18.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
169
+
170
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
171
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
172
+ [ 95/ 219] blk.18.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
173
+ [ 96/ 219] blk.18.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
174
+ [ 97/ 219] blk.18.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
175
+ [ 98/ 219] blk.18.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
176
+ [ 99/ 219] blk.18.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
177
+ [ 100/ 219] blk.18.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
178
+ [ 101/ 219] blk.18.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
179
+ [ 102/ 219] blk.19.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
180
+ [ 103/ 219] blk.19.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
181
+
182
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
183
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
184
+ [ 104/ 219] blk.19.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
185
+ [ 105/ 219] blk.19.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
186
+ [ 106/ 219] blk.19.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
187
+ [ 107/ 219] blk.19.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
188
+ [ 108/ 219] blk.19.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
189
+ [ 109/ 219] blk.19.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
190
+ [ 110/ 219] blk.19.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
191
+ [ 111/ 219] blk.2.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
192
+ [ 112/ 219] blk.2.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
193
+
194
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
195
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
196
+ [ 113/ 219] blk.2.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
197
+ [ 114/ 219] blk.2.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
198
+ [ 115/ 219] blk.2.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
199
+ [ 116/ 219] blk.2.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
200
+ [ 117/ 219] blk.2.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
201
+ [ 118/ 219] blk.2.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
202
+ [ 119/ 219] blk.2.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
203
+ [ 120/ 219] blk.20.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
204
+ [ 121/ 219] blk.20.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
205
+
206
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
207
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
208
+ [ 122/ 219] blk.20.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
209
+ [ 123/ 219] blk.20.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
210
+ [ 124/ 219] blk.20.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
211
+ [ 125/ 219] blk.20.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
212
+ [ 126/ 219] blk.20.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
213
+ [ 127/ 219] blk.20.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
214
+ [ 128/ 219] blk.20.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
215
+ [ 129/ 219] blk.21.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
216
+ [ 130/ 219] blk.21.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
217
+
218
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
219
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
220
+ [ 131/ 219] blk.21.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
221
+ [ 132/ 219] blk.21.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
222
+ [ 133/ 219] blk.21.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
223
+ [ 134/ 219] blk.21.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
224
+ [ 135/ 219] blk.21.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
225
+ [ 136/ 219] blk.21.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
226
+ [ 137/ 219] blk.21.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
227
+ [ 138/ 219] blk.22.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
228
+ [ 139/ 219] blk.22.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
229
+
230
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
231
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
232
+ [ 140/ 219] blk.22.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
233
+ [ 141/ 219] blk.22.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
234
+ [ 142/ 219] blk.22.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
235
+ [ 143/ 219] blk.22.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
236
+ [ 144/ 219] blk.22.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
237
+ [ 145/ 219] blk.22.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
238
+ [ 146/ 219] blk.22.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
239
+ [ 147/ 219] blk.23.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
240
+ [ 148/ 219] blk.23.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
241
+
242
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
243
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
244
+ [ 149/ 219] blk.23.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
245
+ [ 150/ 219] blk.23.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
246
+ [ 151/ 219] blk.23.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
247
+ [ 152/ 219] blk.23.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
248
+ [ 153/ 219] blk.23.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
249
+ [ 154/ 219] blk.23.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
250
+ [ 155/ 219] blk.23.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
251
+ [ 156/ 219] blk.3.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
252
+ [ 157/ 219] blk.3.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
253
+
254
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
255
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
256
+ [ 158/ 219] blk.3.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
257
+ [ 159/ 219] blk.3.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
258
+ [ 160/ 219] blk.3.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
259
+ [ 161/ 219] blk.3.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
260
+ [ 162/ 219] blk.3.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
261
+ [ 163/ 219] blk.3.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
262
+ [ 164/ 219] blk.3.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
263
+ [ 165/ 219] blk.4.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
264
+ [ 166/ 219] blk.4.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
265
+
266
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
267
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
268
+ [ 167/ 219] blk.4.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
269
+ [ 168/ 219] blk.4.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
270
+ [ 169/ 219] blk.4.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
271
+ [ 170/ 219] blk.4.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
272
+ [ 171/ 219] blk.4.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
273
+ [ 172/ 219] blk.4.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
274
+ [ 173/ 219] blk.4.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
275
+ [ 174/ 219] blk.5.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
276
+ [ 175/ 219] blk.5.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
277
+
278
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
279
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
280
+ [ 176/ 219] blk.5.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
281
+ [ 177/ 219] blk.5.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
282
+ [ 178/ 219] blk.5.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
283
+ [ 179/ 219] blk.5.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
284
+ [ 180/ 219] blk.5.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
285
+ [ 181/ 219] blk.5.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
286
+ [ 182/ 219] blk.5.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
287
+ [ 183/ 219] blk.6.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
288
+ [ 184/ 219] blk.6.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
289
+
290
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
291
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
292
+ [ 185/ 219] blk.6.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
293
+ [ 186/ 219] blk.6.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
294
+ [ 187/ 219] blk.6.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
295
+ [ 188/ 219] blk.6.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
296
+ [ 189/ 219] blk.6.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
297
+ [ 190/ 219] blk.6.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
298
+ [ 191/ 219] blk.6.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
299
+ [ 192/ 219] blk.7.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
300
+ [ 193/ 219] blk.7.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
301
+
302
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
303
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
304
+ [ 194/ 219] blk.7.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
305
+ [ 195/ 219] blk.7.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
306
+ [ 196/ 219] blk.7.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
307
+ [ 197/ 219] blk.7.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
308
+ [ 198/ 219] blk.7.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
309
+ [ 199/ 219] blk.7.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
310
+ [ 200/ 219] blk.7.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
311
+ [ 201/ 219] blk.8.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
312
+ [ 202/ 219] blk.8.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
313
+
314
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
315
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
316
+ [ 203/ 219] blk.8.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
317
+ [ 204/ 219] blk.8.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
318
+ [ 205/ 219] blk.8.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
319
+ [ 206/ 219] blk.8.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
320
+ [ 207/ 219] blk.8.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
321
+ [ 208/ 219] blk.8.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
322
+ [ 209/ 219] blk.8.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
323
+ [ 210/ 219] blk.9.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
324
+ [ 211/ 219] blk.9.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
325
+
326
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
327
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
328
+ [ 212/ 219] blk.9.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
329
+ [ 213/ 219] blk.9.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
330
+ [ 214/ 219] blk.9.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
331
+ [ 215/ 219] blk.9.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
332
+ [ 216/ 219] blk.9.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
333
+ [ 217/ 219] blk.9.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
334
+ [ 218/ 219] blk.9.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
335
+ [ 219/ 219] output_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
336
+ llama_model_quantize_internal: model size = 4298.38 MB
337
+ llama_model_quantize_internal: quant size = 1840.12 MB
338
+ llama_model_quantize_internal: WARNING: 24 of 169 tensor(s) required fallback quantization
339
+
340
+ main: quantize time = 6413.71 ms
341
+ main: total time = 6413.71 ms
Q3_K_M_log.txt ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ main: build = 3906 (7eee341b)
2
+ main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
3
+ main: quantizing 'salamandra-2b-instruct_bf16.gguf' to './salamandra-2b-instruct_Q3_K_M.gguf' as Q3_K_M
4
+ llama_model_loader: loaded meta data with 31 key-value pairs and 219 tensors from salamandra-2b-instruct_bf16.gguf (version GGUF V3 (latest))
5
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
6
+ llama_model_loader: - kv 0: general.architecture str = llama
7
+ llama_model_loader: - kv 1: general.type str = model
8
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
9
+ llama_model_loader: - kv 3: general.license str = apache-2.0
10
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
11
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
12
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
13
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
14
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
15
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
16
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
17
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
18
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
19
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
20
+ llama_model_loader: - kv 14: general.file_type u32 = 32
21
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
22
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
23
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
24
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
25
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
26
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
27
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
28
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
29
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
30
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
31
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
32
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
33
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
34
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
35
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
36
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
37
+ llama_model_loader: - type f32: 49 tensors
38
+ llama_model_loader: - type bf16: 170 tensors
39
+ ================================ Have weights data with 168 entries
40
+ [ 1/ 219] output.weight - [ 2048, 256000, 1, 1], type = bf16, size = 1000.000 MB
41
+ [ 2/ 219] token_embd.weight - [ 2048, 256000, 1, 1], type = bf16,
42
+ ====== llama_model_quantize_internal: did not find weights for token_embd.weight
43
+ converting to q3_K .. load_imatrix: imatrix dataset='./imatrix/oscar/imatrix-dataset.txt'
44
+ load_imatrix: loaded 168 importance matrix entries from imatrix/oscar/imatrix.dat computed on 44176 chunks
45
+ prepare_imatrix: have 168 importance matrix entries
46
+ size = 1000.00 MiB -> 214.84 MiB
47
+ [ 3/ 219] blk.0.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
48
+ [ 4/ 219] blk.0.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
49
+
50
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
51
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
52
+ [ 5/ 219] blk.0.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
53
+ [ 6/ 219] blk.0.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
54
+ [ 7/ 219] blk.0.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
55
+ [ 8/ 219] blk.0.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
56
+ [ 9/ 219] blk.0.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
57
+ [ 10/ 219] blk.0.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
58
+ [ 11/ 219] blk.0.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
59
+ [ 12/ 219] blk.1.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
60
+ [ 13/ 219] blk.1.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
61
+
62
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
63
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
64
+ [ 14/ 219] blk.1.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
65
+ [ 15/ 219] blk.1.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
66
+ [ 16/ 219] blk.1.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
67
+ [ 17/ 219] blk.1.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
68
+ [ 18/ 219] blk.1.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
69
+ [ 19/ 219] blk.1.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
70
+ [ 20/ 219] blk.1.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
71
+ [ 21/ 219] blk.10.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
72
+ [ 22/ 219] blk.10.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
73
+
74
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
75
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
76
+ [ 23/ 219] blk.10.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
77
+ [ 24/ 219] blk.10.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
78
+ [ 25/ 219] blk.10.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
79
+ [ 26/ 219] blk.10.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
80
+ [ 27/ 219] blk.10.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
81
+ [ 28/ 219] blk.10.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
82
+ [ 29/ 219] blk.10.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
83
+ [ 30/ 219] blk.11.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
84
+ [ 31/ 219] blk.11.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
85
+
86
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
87
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
88
+ [ 32/ 219] blk.11.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
89
+ [ 33/ 219] blk.11.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
90
+ [ 34/ 219] blk.11.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
91
+ [ 35/ 219] blk.11.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
92
+ [ 36/ 219] blk.11.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
93
+ [ 37/ 219] blk.11.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
94
+ [ 38/ 219] blk.11.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
95
+ [ 39/ 219] blk.12.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
96
+ [ 40/ 219] blk.12.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
97
+
98
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
99
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
100
+ [ 41/ 219] blk.12.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
101
+ [ 42/ 219] blk.12.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
102
+ [ 43/ 219] blk.12.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
103
+ [ 44/ 219] blk.12.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
104
+ [ 45/ 219] blk.12.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
105
+ [ 46/ 219] blk.12.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
106
+ [ 47/ 219] blk.12.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
107
+ [ 48/ 219] blk.13.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
108
+ [ 49/ 219] blk.13.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
109
+
110
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
111
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
112
+ [ 50/ 219] blk.13.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
113
+ [ 51/ 219] blk.13.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
114
+ [ 52/ 219] blk.13.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
115
+ [ 53/ 219] blk.13.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
116
+ [ 54/ 219] blk.13.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
117
+ [ 55/ 219] blk.13.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
118
+ [ 56/ 219] blk.13.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
119
+ [ 57/ 219] blk.14.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
120
+ [ 58/ 219] blk.14.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
121
+
122
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
123
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
124
+ [ 59/ 219] blk.14.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
125
+ [ 60/ 219] blk.14.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
126
+ [ 61/ 219] blk.14.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
127
+ [ 62/ 219] blk.14.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
128
+ [ 63/ 219] blk.14.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
129
+ [ 64/ 219] blk.14.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
130
+ [ 65/ 219] blk.14.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
131
+ [ 66/ 219] blk.15.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
132
+ [ 67/ 219] blk.15.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
133
+
134
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
135
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
136
+ [ 68/ 219] blk.15.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
137
+ [ 69/ 219] blk.15.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
138
+ [ 70/ 219] blk.15.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
139
+ [ 71/ 219] blk.15.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
140
+ [ 72/ 219] blk.15.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
141
+ [ 73/ 219] blk.15.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
142
+ [ 74/ 219] blk.15.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
143
+ [ 75/ 219] blk.16.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
144
+ [ 76/ 219] blk.16.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
145
+
146
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
147
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
148
+ [ 77/ 219] blk.16.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
149
+ [ 78/ 219] blk.16.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
150
+ [ 79/ 219] blk.16.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
151
+ [ 80/ 219] blk.16.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
152
+ [ 81/ 219] blk.16.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
153
+ [ 82/ 219] blk.16.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
154
+ [ 83/ 219] blk.16.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
155
+ [ 84/ 219] blk.17.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
156
+ [ 85/ 219] blk.17.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
157
+
158
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
159
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
160
+ [ 86/ 219] blk.17.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
161
+ [ 87/ 219] blk.17.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
162
+ [ 88/ 219] blk.17.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
163
+ [ 89/ 219] blk.17.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
164
+ [ 90/ 219] blk.17.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
165
+ [ 91/ 219] blk.17.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
166
+ [ 92/ 219] blk.17.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
167
+ [ 93/ 219] blk.18.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
168
+ [ 94/ 219] blk.18.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
169
+
170
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
171
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
172
+ [ 95/ 219] blk.18.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
173
+ [ 96/ 219] blk.18.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
174
+ [ 97/ 219] blk.18.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
175
+ [ 98/ 219] blk.18.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
176
+ [ 99/ 219] blk.18.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
177
+ [ 100/ 219] blk.18.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
178
+ [ 101/ 219] blk.18.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
179
+ [ 102/ 219] blk.19.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
180
+ [ 103/ 219] blk.19.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
181
+
182
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
183
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
184
+ [ 104/ 219] blk.19.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
185
+ [ 105/ 219] blk.19.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
186
+ [ 106/ 219] blk.19.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
187
+ [ 107/ 219] blk.19.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
188
+ [ 108/ 219] blk.19.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
189
+ [ 109/ 219] blk.19.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
190
+ [ 110/ 219] blk.19.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
191
+ [ 111/ 219] blk.2.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
192
+ [ 112/ 219] blk.2.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
193
+
194
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
195
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
196
+ [ 113/ 219] blk.2.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
197
+ [ 114/ 219] blk.2.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
198
+ [ 115/ 219] blk.2.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
199
+ [ 116/ 219] blk.2.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
200
+ [ 117/ 219] blk.2.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
201
+ [ 118/ 219] blk.2.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
202
+ [ 119/ 219] blk.2.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
203
+ [ 120/ 219] blk.20.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
204
+ [ 121/ 219] blk.20.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
205
+
206
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
207
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
208
+ [ 122/ 219] blk.20.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
209
+ [ 123/ 219] blk.20.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
210
+ [ 124/ 219] blk.20.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
211
+ [ 125/ 219] blk.20.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
212
+ [ 126/ 219] blk.20.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
213
+ [ 127/ 219] blk.20.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
214
+ [ 128/ 219] blk.20.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
215
+ [ 129/ 219] blk.21.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
216
+ [ 130/ 219] blk.21.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
217
+
218
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
219
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
220
+ [ 131/ 219] blk.21.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
221
+ [ 132/ 219] blk.21.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
222
+ [ 133/ 219] blk.21.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
223
+ [ 134/ 219] blk.21.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
224
+ [ 135/ 219] blk.21.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
225
+ [ 136/ 219] blk.21.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
226
+ [ 137/ 219] blk.21.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
227
+ [ 138/ 219] blk.22.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
228
+ [ 139/ 219] blk.22.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
229
+
230
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
231
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
232
+ [ 140/ 219] blk.22.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
233
+ [ 141/ 219] blk.22.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
234
+ [ 142/ 219] blk.22.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
235
+ [ 143/ 219] blk.22.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
236
+ [ 144/ 219] blk.22.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
237
+ [ 145/ 219] blk.22.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
238
+ [ 146/ 219] blk.22.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
239
+ [ 147/ 219] blk.23.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
240
+ [ 148/ 219] blk.23.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
241
+
242
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
243
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
244
+ [ 149/ 219] blk.23.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
245
+ [ 150/ 219] blk.23.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
246
+ [ 151/ 219] blk.23.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
247
+ [ 152/ 219] blk.23.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
248
+ [ 153/ 219] blk.23.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
249
+ [ 154/ 219] blk.23.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
250
+ [ 155/ 219] blk.23.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
251
+ [ 156/ 219] blk.3.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
252
+ [ 157/ 219] blk.3.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
253
+
254
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
255
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
256
+ [ 158/ 219] blk.3.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
257
+ [ 159/ 219] blk.3.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
258
+ [ 160/ 219] blk.3.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
259
+ [ 161/ 219] blk.3.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
260
+ [ 162/ 219] blk.3.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
261
+ [ 163/ 219] blk.3.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
262
+ [ 164/ 219] blk.3.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
263
+ [ 165/ 219] blk.4.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
264
+ [ 166/ 219] blk.4.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
265
+
266
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
267
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
268
+ [ 167/ 219] blk.4.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
269
+ [ 168/ 219] blk.4.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
270
+ [ 169/ 219] blk.4.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
271
+ [ 170/ 219] blk.4.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
272
+ [ 171/ 219] blk.4.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
273
+ [ 172/ 219] blk.4.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
274
+ [ 173/ 219] blk.4.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
275
+ [ 174/ 219] blk.5.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
276
+ [ 175/ 219] blk.5.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
277
+
278
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
279
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
280
+ [ 176/ 219] blk.5.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
281
+ [ 177/ 219] blk.5.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
282
+ [ 178/ 219] blk.5.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
283
+ [ 179/ 219] blk.5.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
284
+ [ 180/ 219] blk.5.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
285
+ [ 181/ 219] blk.5.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
286
+ [ 182/ 219] blk.5.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
287
+ [ 183/ 219] blk.6.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
288
+ [ 184/ 219] blk.6.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
289
+
290
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
291
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
292
+ [ 185/ 219] blk.6.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
293
+ [ 186/ 219] blk.6.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
294
+ [ 187/ 219] blk.6.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
295
+ [ 188/ 219] blk.6.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
296
+ [ 189/ 219] blk.6.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
297
+ [ 190/ 219] blk.6.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
298
+ [ 191/ 219] blk.6.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
299
+ [ 192/ 219] blk.7.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
300
+ [ 193/ 219] blk.7.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
301
+
302
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
303
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
304
+ [ 194/ 219] blk.7.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
305
+ [ 195/ 219] blk.7.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
306
+ [ 196/ 219] blk.7.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
307
+ [ 197/ 219] blk.7.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
308
+ [ 198/ 219] blk.7.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
309
+ [ 199/ 219] blk.7.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
310
+ [ 200/ 219] blk.7.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
311
+ [ 201/ 219] blk.8.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
312
+ [ 202/ 219] blk.8.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
313
+
314
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
315
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
316
+ [ 203/ 219] blk.8.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
317
+ [ 204/ 219] blk.8.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
318
+ [ 205/ 219] blk.8.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
319
+ [ 206/ 219] blk.8.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
320
+ [ 207/ 219] blk.8.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
321
+ [ 208/ 219] blk.8.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
322
+ [ 209/ 219] blk.8.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
323
+ [ 210/ 219] blk.9.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
324
+ [ 211/ 219] blk.9.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
325
+
326
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
327
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
328
+ [ 212/ 219] blk.9.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
329
+ [ 213/ 219] blk.9.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q3_K .. size = 21.25 MiB -> 4.57 MiB
330
+ [ 214/ 219] blk.9.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
331
+ [ 215/ 219] blk.9.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
332
+ [ 216/ 219] blk.9.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
333
+ [ 217/ 219] blk.9.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q3_K .. size = 8.00 MiB -> 1.72 MiB
334
+ [ 218/ 219] blk.9.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
335
+ [ 219/ 219] output_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
336
+ llama_model_quantize_internal: model size = 4298.38 MB
337
+ llama_model_quantize_internal: quant size = 1801.84 MB
338
+ llama_model_quantize_internal: WARNING: 24 of 169 tensor(s) required fallback quantization
339
+
340
+ main: quantize time = 5431.48 ms
341
+ main: total time = 5431.48 ms
Q4_K_M_log.txt ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ main: build = 3906 (7eee341b)
2
+ main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
3
+ main: quantizing 'salamandra-2b-instruct_bf16.gguf' to './salamandra-2b-instruct_Q4_K_M.gguf' as Q4_K_M
4
+ llama_model_loader: loaded meta data with 31 key-value pairs and 219 tensors from salamandra-2b-instruct_bf16.gguf (version GGUF V3 (latest))
5
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
6
+ llama_model_loader: - kv 0: general.architecture str = llama
7
+ llama_model_loader: - kv 1: general.type str = model
8
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
9
+ llama_model_loader: - kv 3: general.license str = apache-2.0
10
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
11
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
12
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
13
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
14
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
15
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
16
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
17
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
18
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
19
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
20
+ llama_model_loader: - kv 14: general.file_type u32 = 32
21
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
22
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
23
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
24
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
25
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
26
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
27
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
28
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
29
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
30
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
31
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
32
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
33
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
34
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
35
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
36
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
37
+ llama_model_loader: - type f32: 49 tensors
38
+ llama_model_loader: - type bf16: 170 tensors
39
+ ================================ Have weights data with 168 entries
40
+ [ 1/ 219] output.weight - [ 2048, 256000, 1, 1], type = bf16, size = 1000.000 MB
41
+ [ 2/ 219] token_embd.weight - [ 2048, 256000, 1, 1], type = bf16,
42
+ ====== llama_model_quantize_internal: did not find weights for token_embd.weight
43
+ converting to q4_K .. load_imatrix: imatrix dataset='./imatrix/oscar/imatrix-dataset.txt'
44
+ load_imatrix: loaded 168 importance matrix entries from imatrix/oscar/imatrix.dat computed on 44176 chunks
45
+ prepare_imatrix: have 168 importance matrix entries
46
+ size = 1000.00 MiB -> 281.25 MiB
47
+ [ 3/ 219] blk.0.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
48
+ [ 4/ 219] blk.0.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
49
+
50
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
51
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
52
+ [ 5/ 219] blk.0.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
53
+ [ 6/ 219] blk.0.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
54
+ [ 7/ 219] blk.0.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
55
+ [ 8/ 219] blk.0.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
56
+ [ 9/ 219] blk.0.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
57
+ [ 10/ 219] blk.0.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
58
+ [ 11/ 219] blk.0.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
59
+ [ 12/ 219] blk.1.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
60
+ [ 13/ 219] blk.1.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
61
+
62
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
63
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
64
+ [ 14/ 219] blk.1.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
65
+ [ 15/ 219] blk.1.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
66
+ [ 16/ 219] blk.1.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
67
+ [ 17/ 219] blk.1.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
68
+ [ 18/ 219] blk.1.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
69
+ [ 19/ 219] blk.1.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
70
+ [ 20/ 219] blk.1.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
71
+ [ 21/ 219] blk.10.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
72
+ [ 22/ 219] blk.10.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
73
+
74
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
75
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
76
+ [ 23/ 219] blk.10.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
77
+ [ 24/ 219] blk.10.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
78
+ [ 25/ 219] blk.10.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
79
+ [ 26/ 219] blk.10.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
80
+ [ 27/ 219] blk.10.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
81
+ [ 28/ 219] blk.10.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
82
+ [ 29/ 219] blk.10.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
83
+ [ 30/ 219] blk.11.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
84
+ [ 31/ 219] blk.11.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
85
+
86
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
87
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
88
+ [ 32/ 219] blk.11.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
89
+ [ 33/ 219] blk.11.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
90
+ [ 34/ 219] blk.11.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
91
+ [ 35/ 219] blk.11.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
92
+ [ 36/ 219] blk.11.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
93
+ [ 37/ 219] blk.11.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
94
+ [ 38/ 219] blk.11.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
95
+ [ 39/ 219] blk.12.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
96
+ [ 40/ 219] blk.12.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
97
+
98
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
99
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
100
+ [ 41/ 219] blk.12.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
101
+ [ 42/ 219] blk.12.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
102
+ [ 43/ 219] blk.12.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
103
+ [ 44/ 219] blk.12.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
104
+ [ 45/ 219] blk.12.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
105
+ [ 46/ 219] blk.12.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
106
+ [ 47/ 219] blk.12.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
107
+ [ 48/ 219] blk.13.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
108
+ [ 49/ 219] blk.13.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
109
+
110
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
111
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
112
+ [ 50/ 219] blk.13.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
113
+ [ 51/ 219] blk.13.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
114
+ [ 52/ 219] blk.13.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
115
+ [ 53/ 219] blk.13.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
116
+ [ 54/ 219] blk.13.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
117
+ [ 55/ 219] blk.13.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
118
+ [ 56/ 219] blk.13.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
119
+ [ 57/ 219] blk.14.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
120
+ [ 58/ 219] blk.14.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
121
+
122
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
123
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
124
+ [ 59/ 219] blk.14.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
125
+ [ 60/ 219] blk.14.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
126
+ [ 61/ 219] blk.14.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
127
+ [ 62/ 219] blk.14.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
128
+ [ 63/ 219] blk.14.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
129
+ [ 64/ 219] blk.14.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
130
+ [ 65/ 219] blk.14.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
131
+ [ 66/ 219] blk.15.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
132
+ [ 67/ 219] blk.15.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
133
+
134
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
135
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
136
+ [ 68/ 219] blk.15.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
137
+ [ 69/ 219] blk.15.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
138
+ [ 70/ 219] blk.15.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
139
+ [ 71/ 219] blk.15.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
140
+ [ 72/ 219] blk.15.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
141
+ [ 73/ 219] blk.15.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
142
+ [ 74/ 219] blk.15.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
143
+ [ 75/ 219] blk.16.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
144
+ [ 76/ 219] blk.16.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
145
+
146
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
147
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
148
+ [ 77/ 219] blk.16.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
149
+ [ 78/ 219] blk.16.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
150
+ [ 79/ 219] blk.16.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
151
+ [ 80/ 219] blk.16.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
152
+ [ 81/ 219] blk.16.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
153
+ [ 82/ 219] blk.16.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
154
+ [ 83/ 219] blk.16.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
155
+ [ 84/ 219] blk.17.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
156
+ [ 85/ 219] blk.17.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
157
+
158
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
159
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
160
+ [ 86/ 219] blk.17.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
161
+ [ 87/ 219] blk.17.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
162
+ [ 88/ 219] blk.17.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
163
+ [ 89/ 219] blk.17.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
164
+ [ 90/ 219] blk.17.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
165
+ [ 91/ 219] blk.17.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
166
+ [ 92/ 219] blk.17.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
167
+ [ 93/ 219] blk.18.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
168
+ [ 94/ 219] blk.18.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
169
+
170
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
171
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
172
+ [ 95/ 219] blk.18.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
173
+ [ 96/ 219] blk.18.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
174
+ [ 97/ 219] blk.18.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
175
+ [ 98/ 219] blk.18.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
176
+ [ 99/ 219] blk.18.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
177
+ [ 100/ 219] blk.18.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
178
+ [ 101/ 219] blk.18.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
179
+ [ 102/ 219] blk.19.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
180
+ [ 103/ 219] blk.19.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
181
+
182
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
183
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
184
+ [ 104/ 219] blk.19.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
185
+ [ 105/ 219] blk.19.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
186
+ [ 106/ 219] blk.19.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
187
+ [ 107/ 219] blk.19.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
188
+ [ 108/ 219] blk.19.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
189
+ [ 109/ 219] blk.19.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
190
+ [ 110/ 219] blk.19.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
191
+ [ 111/ 219] blk.2.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
192
+ [ 112/ 219] blk.2.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
193
+
194
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
195
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
196
+ [ 113/ 219] blk.2.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
197
+ [ 114/ 219] blk.2.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
198
+ [ 115/ 219] blk.2.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
199
+ [ 116/ 219] blk.2.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
200
+ [ 117/ 219] blk.2.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
201
+ [ 118/ 219] blk.2.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
202
+ [ 119/ 219] blk.2.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
203
+ [ 120/ 219] blk.20.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
204
+ [ 121/ 219] blk.20.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
205
+
206
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
207
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
208
+ [ 122/ 219] blk.20.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
209
+ [ 123/ 219] blk.20.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
210
+ [ 124/ 219] blk.20.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
211
+ [ 125/ 219] blk.20.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
212
+ [ 126/ 219] blk.20.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
213
+ [ 127/ 219] blk.20.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
214
+ [ 128/ 219] blk.20.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
215
+ [ 129/ 219] blk.21.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
216
+ [ 130/ 219] blk.21.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
217
+
218
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
219
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
220
+ [ 131/ 219] blk.21.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
221
+ [ 132/ 219] blk.21.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
222
+ [ 133/ 219] blk.21.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
223
+ [ 134/ 219] blk.21.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
224
+ [ 135/ 219] blk.21.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
225
+ [ 136/ 219] blk.21.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
226
+ [ 137/ 219] blk.21.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
227
+ [ 138/ 219] blk.22.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
228
+ [ 139/ 219] blk.22.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
229
+
230
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
231
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
232
+ [ 140/ 219] blk.22.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
233
+ [ 141/ 219] blk.22.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
234
+ [ 142/ 219] blk.22.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
235
+ [ 143/ 219] blk.22.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
236
+ [ 144/ 219] blk.22.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
237
+ [ 145/ 219] blk.22.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
238
+ [ 146/ 219] blk.22.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
239
+ [ 147/ 219] blk.23.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
240
+ [ 148/ 219] blk.23.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
241
+
242
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
243
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
244
+ [ 149/ 219] blk.23.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
245
+ [ 150/ 219] blk.23.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
246
+ [ 151/ 219] blk.23.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
247
+ [ 152/ 219] blk.23.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
248
+ [ 153/ 219] blk.23.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
249
+ [ 154/ 219] blk.23.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
250
+ [ 155/ 219] blk.23.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
251
+ [ 156/ 219] blk.3.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
252
+ [ 157/ 219] blk.3.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
253
+
254
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
255
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
256
+ [ 158/ 219] blk.3.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
257
+ [ 159/ 219] blk.3.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
258
+ [ 160/ 219] blk.3.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
259
+ [ 161/ 219] blk.3.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
260
+ [ 162/ 219] blk.3.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
261
+ [ 163/ 219] blk.3.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
262
+ [ 164/ 219] blk.3.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
263
+ [ 165/ 219] blk.4.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
264
+ [ 166/ 219] blk.4.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
265
+
266
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
267
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
268
+ [ 167/ 219] blk.4.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
269
+ [ 168/ 219] blk.4.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
270
+ [ 169/ 219] blk.4.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
271
+ [ 170/ 219] blk.4.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
272
+ [ 171/ 219] blk.4.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
273
+ [ 172/ 219] blk.4.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
274
+ [ 173/ 219] blk.4.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
275
+ [ 174/ 219] blk.5.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
276
+ [ 175/ 219] blk.5.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
277
+
278
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
279
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
280
+ [ 176/ 219] blk.5.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
281
+ [ 177/ 219] blk.5.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
282
+ [ 178/ 219] blk.5.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
283
+ [ 179/ 219] blk.5.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
284
+ [ 180/ 219] blk.5.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
285
+ [ 181/ 219] blk.5.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
286
+ [ 182/ 219] blk.5.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
287
+ [ 183/ 219] blk.6.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
288
+ [ 184/ 219] blk.6.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
289
+
290
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
291
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
292
+ [ 185/ 219] blk.6.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
293
+ [ 186/ 219] blk.6.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
294
+ [ 187/ 219] blk.6.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
295
+ [ 188/ 219] blk.6.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
296
+ [ 189/ 219] blk.6.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
297
+ [ 190/ 219] blk.6.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
298
+ [ 191/ 219] blk.6.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
299
+ [ 192/ 219] blk.7.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
300
+ [ 193/ 219] blk.7.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
301
+
302
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
303
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
304
+ [ 194/ 219] blk.7.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
305
+ [ 195/ 219] blk.7.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
306
+ [ 196/ 219] blk.7.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
307
+ [ 197/ 219] blk.7.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
308
+ [ 198/ 219] blk.7.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
309
+ [ 199/ 219] blk.7.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
310
+ [ 200/ 219] blk.7.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
311
+ [ 201/ 219] blk.8.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
312
+ [ 202/ 219] blk.8.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
313
+
314
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
315
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
316
+ [ 203/ 219] blk.8.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
317
+ [ 204/ 219] blk.8.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
318
+ [ 205/ 219] blk.8.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
319
+ [ 206/ 219] blk.8.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
320
+ [ 207/ 219] blk.8.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
321
+ [ 208/ 219] blk.8.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
322
+ [ 209/ 219] blk.8.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
323
+ [ 210/ 219] blk.9.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
324
+ [ 211/ 219] blk.9.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
325
+
326
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
327
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
328
+ [ 212/ 219] blk.9.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
329
+ [ 213/ 219] blk.9.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
330
+ [ 214/ 219] blk.9.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
331
+ [ 215/ 219] blk.9.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
332
+ [ 216/ 219] blk.9.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
333
+ [ 217/ 219] blk.9.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
334
+ [ 218/ 219] blk.9.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
335
+ [ 219/ 219] output_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
336
+ llama_model_quantize_internal: model size = 4298.38 MB
337
+ llama_model_quantize_internal: quant size = 2020.01 MB
338
+ llama_model_quantize_internal: WARNING: 24 of 169 tensor(s) required fallback quantization
339
+
340
+ main: quantize time = 8837.33 ms
341
+ main: total time = 8837.33 ms
Q4_K_S_log.txt ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ main: build = 3906 (7eee341b)
2
+ main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
3
+ main: quantizing 'salamandra-2b-instruct_bf16.gguf' to './salamandra-2b-instruct_Q4_K_S.gguf' as Q4_K_S
4
+ llama_model_loader: loaded meta data with 31 key-value pairs and 219 tensors from salamandra-2b-instruct_bf16.gguf (version GGUF V3 (latest))
5
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
6
+ llama_model_loader: - kv 0: general.architecture str = llama
7
+ llama_model_loader: - kv 1: general.type str = model
8
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
9
+ llama_model_loader: - kv 3: general.license str = apache-2.0
10
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
11
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
12
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
13
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
14
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
15
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
16
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
17
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
18
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
19
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
20
+ llama_model_loader: - kv 14: general.file_type u32 = 32
21
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
22
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
23
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
24
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
25
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
26
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
27
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
28
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
29
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
30
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
31
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
32
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
33
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
34
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
35
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
36
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
37
+ llama_model_loader: - type f32: 49 tensors
38
+ llama_model_loader: - type bf16: 170 tensors
39
+ ================================ Have weights data with 168 entries
40
+ [ 1/ 219] output.weight - [ 2048, 256000, 1, 1], type = bf16, size = 1000.000 MB
41
+ [ 2/ 219] token_embd.weight - [ 2048, 256000, 1, 1], type = bf16,
42
+ ====== llama_model_quantize_internal: did not find weights for token_embd.weight
43
+ converting to q4_K .. load_imatrix: imatrix dataset='./imatrix/oscar/imatrix-dataset.txt'
44
+ load_imatrix: loaded 168 importance matrix entries from imatrix/oscar/imatrix.dat computed on 44176 chunks
45
+ prepare_imatrix: have 168 importance matrix entries
46
+ size = 1000.00 MiB -> 281.25 MiB
47
+ [ 3/ 219] blk.0.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
48
+ [ 4/ 219] blk.0.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
49
+
50
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
51
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
52
+ [ 5/ 219] blk.0.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
53
+ [ 6/ 219] blk.0.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
54
+ [ 7/ 219] blk.0.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
55
+ [ 8/ 219] blk.0.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
56
+ [ 9/ 219] blk.0.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
57
+ [ 10/ 219] blk.0.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
58
+ [ 11/ 219] blk.0.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
59
+ [ 12/ 219] blk.1.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
60
+ [ 13/ 219] blk.1.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
61
+
62
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
63
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
64
+ [ 14/ 219] blk.1.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
65
+ [ 15/ 219] blk.1.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
66
+ [ 16/ 219] blk.1.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
67
+ [ 17/ 219] blk.1.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
68
+ [ 18/ 219] blk.1.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
69
+ [ 19/ 219] blk.1.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
70
+ [ 20/ 219] blk.1.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
71
+ [ 21/ 219] blk.10.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
72
+ [ 22/ 219] blk.10.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
73
+
74
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
75
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
76
+ [ 23/ 219] blk.10.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
77
+ [ 24/ 219] blk.10.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
78
+ [ 25/ 219] blk.10.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
79
+ [ 26/ 219] blk.10.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
80
+ [ 27/ 219] blk.10.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
81
+ [ 28/ 219] blk.10.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
82
+ [ 29/ 219] blk.10.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
83
+ [ 30/ 219] blk.11.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
84
+ [ 31/ 219] blk.11.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
85
+
86
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
87
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
88
+ [ 32/ 219] blk.11.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
89
+ [ 33/ 219] blk.11.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
90
+ [ 34/ 219] blk.11.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
91
+ [ 35/ 219] blk.11.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
92
+ [ 36/ 219] blk.11.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
93
+ [ 37/ 219] blk.11.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
94
+ [ 38/ 219] blk.11.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
95
+ [ 39/ 219] blk.12.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
96
+ [ 40/ 219] blk.12.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
97
+
98
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
99
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
100
+ [ 41/ 219] blk.12.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
101
+ [ 42/ 219] blk.12.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
102
+ [ 43/ 219] blk.12.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
103
+ [ 44/ 219] blk.12.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
104
+ [ 45/ 219] blk.12.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
105
+ [ 46/ 219] blk.12.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
106
+ [ 47/ 219] blk.12.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
107
+ [ 48/ 219] blk.13.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
108
+ [ 49/ 219] blk.13.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
109
+
110
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
111
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
112
+ [ 50/ 219] blk.13.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
113
+ [ 51/ 219] blk.13.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
114
+ [ 52/ 219] blk.13.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
115
+ [ 53/ 219] blk.13.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
116
+ [ 54/ 219] blk.13.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
117
+ [ 55/ 219] blk.13.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
118
+ [ 56/ 219] blk.13.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
119
+ [ 57/ 219] blk.14.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
120
+ [ 58/ 219] blk.14.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
121
+
122
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
123
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
124
+ [ 59/ 219] blk.14.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
125
+ [ 60/ 219] blk.14.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
126
+ [ 61/ 219] blk.14.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
127
+ [ 62/ 219] blk.14.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
128
+ [ 63/ 219] blk.14.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
129
+ [ 64/ 219] blk.14.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
130
+ [ 65/ 219] blk.14.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
131
+ [ 66/ 219] blk.15.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
132
+ [ 67/ 219] blk.15.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
133
+
134
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
135
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
136
+ [ 68/ 219] blk.15.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
137
+ [ 69/ 219] blk.15.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
138
+ [ 70/ 219] blk.15.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
139
+ [ 71/ 219] blk.15.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
140
+ [ 72/ 219] blk.15.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
141
+ [ 73/ 219] blk.15.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
142
+ [ 74/ 219] blk.15.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
143
+ [ 75/ 219] blk.16.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
144
+ [ 76/ 219] blk.16.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
145
+
146
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
147
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
148
+ [ 77/ 219] blk.16.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
149
+ [ 78/ 219] blk.16.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
150
+ [ 79/ 219] blk.16.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
151
+ [ 80/ 219] blk.16.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
152
+ [ 81/ 219] blk.16.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
153
+ [ 82/ 219] blk.16.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
154
+ [ 83/ 219] blk.16.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
155
+ [ 84/ 219] blk.17.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
156
+ [ 85/ 219] blk.17.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
157
+
158
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
159
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
160
+ [ 86/ 219] blk.17.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
161
+ [ 87/ 219] blk.17.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
162
+ [ 88/ 219] blk.17.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
163
+ [ 89/ 219] blk.17.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
164
+ [ 90/ 219] blk.17.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
165
+ [ 91/ 219] blk.17.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
166
+ [ 92/ 219] blk.17.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
167
+ [ 93/ 219] blk.18.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
168
+ [ 94/ 219] blk.18.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
169
+
170
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
171
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
172
+ [ 95/ 219] blk.18.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
173
+ [ 96/ 219] blk.18.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
174
+ [ 97/ 219] blk.18.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
175
+ [ 98/ 219] blk.18.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
176
+ [ 99/ 219] blk.18.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
177
+ [ 100/ 219] blk.18.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
178
+ [ 101/ 219] blk.18.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
179
+ [ 102/ 219] blk.19.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
180
+ [ 103/ 219] blk.19.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
181
+
182
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
183
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
184
+ [ 104/ 219] blk.19.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
185
+ [ 105/ 219] blk.19.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
186
+ [ 106/ 219] blk.19.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
187
+ [ 107/ 219] blk.19.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
188
+ [ 108/ 219] blk.19.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
189
+ [ 109/ 219] blk.19.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
190
+ [ 110/ 219] blk.19.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
191
+ [ 111/ 219] blk.2.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
192
+ [ 112/ 219] blk.2.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
193
+
194
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
195
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
196
+ [ 113/ 219] blk.2.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
197
+ [ 114/ 219] blk.2.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
198
+ [ 115/ 219] blk.2.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
199
+ [ 116/ 219] blk.2.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
200
+ [ 117/ 219] blk.2.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
201
+ [ 118/ 219] blk.2.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
202
+ [ 119/ 219] blk.2.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
203
+ [ 120/ 219] blk.20.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
204
+ [ 121/ 219] blk.20.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
205
+
206
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
207
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
208
+ [ 122/ 219] blk.20.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
209
+ [ 123/ 219] blk.20.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
210
+ [ 124/ 219] blk.20.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
211
+ [ 125/ 219] blk.20.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
212
+ [ 126/ 219] blk.20.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
213
+ [ 127/ 219] blk.20.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
214
+ [ 128/ 219] blk.20.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
215
+ [ 129/ 219] blk.21.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
216
+ [ 130/ 219] blk.21.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
217
+
218
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
219
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
220
+ [ 131/ 219] blk.21.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
221
+ [ 132/ 219] blk.21.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
222
+ [ 133/ 219] blk.21.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
223
+ [ 134/ 219] blk.21.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
224
+ [ 135/ 219] blk.21.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
225
+ [ 136/ 219] blk.21.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
226
+ [ 137/ 219] blk.21.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
227
+ [ 138/ 219] blk.22.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
228
+ [ 139/ 219] blk.22.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
229
+
230
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
231
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
232
+ [ 140/ 219] blk.22.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
233
+ [ 141/ 219] blk.22.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
234
+ [ 142/ 219] blk.22.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
235
+ [ 143/ 219] blk.22.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
236
+ [ 144/ 219] blk.22.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
237
+ [ 145/ 219] blk.22.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
238
+ [ 146/ 219] blk.22.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
239
+ [ 147/ 219] blk.23.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
240
+ [ 148/ 219] blk.23.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
241
+
242
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
243
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
244
+ [ 149/ 219] blk.23.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
245
+ [ 150/ 219] blk.23.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
246
+ [ 151/ 219] blk.23.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
247
+ [ 152/ 219] blk.23.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
248
+ [ 153/ 219] blk.23.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
249
+ [ 154/ 219] blk.23.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
250
+ [ 155/ 219] blk.23.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
251
+ [ 156/ 219] blk.3.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
252
+ [ 157/ 219] blk.3.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
253
+
254
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
255
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
256
+ [ 158/ 219] blk.3.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
257
+ [ 159/ 219] blk.3.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
258
+ [ 160/ 219] blk.3.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
259
+ [ 161/ 219] blk.3.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
260
+ [ 162/ 219] blk.3.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
261
+ [ 163/ 219] blk.3.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
262
+ [ 164/ 219] blk.3.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
263
+ [ 165/ 219] blk.4.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
264
+ [ 166/ 219] blk.4.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
265
+
266
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
267
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
268
+ [ 167/ 219] blk.4.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
269
+ [ 168/ 219] blk.4.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
270
+ [ 169/ 219] blk.4.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
271
+ [ 170/ 219] blk.4.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
272
+ [ 171/ 219] blk.4.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
273
+ [ 172/ 219] blk.4.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
274
+ [ 173/ 219] blk.4.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
275
+ [ 174/ 219] blk.5.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
276
+ [ 175/ 219] blk.5.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
277
+
278
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
279
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
280
+ [ 176/ 219] blk.5.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
281
+ [ 177/ 219] blk.5.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
282
+ [ 178/ 219] blk.5.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
283
+ [ 179/ 219] blk.5.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
284
+ [ 180/ 219] blk.5.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
285
+ [ 181/ 219] blk.5.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
286
+ [ 182/ 219] blk.5.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
287
+ [ 183/ 219] blk.6.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
288
+ [ 184/ 219] blk.6.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
289
+
290
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
291
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
292
+ [ 185/ 219] blk.6.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
293
+ [ 186/ 219] blk.6.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
294
+ [ 187/ 219] blk.6.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
295
+ [ 188/ 219] blk.6.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
296
+ [ 189/ 219] blk.6.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
297
+ [ 190/ 219] blk.6.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
298
+ [ 191/ 219] blk.6.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
299
+ [ 192/ 219] blk.7.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
300
+ [ 193/ 219] blk.7.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
301
+
302
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
303
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
304
+ [ 194/ 219] blk.7.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
305
+ [ 195/ 219] blk.7.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
306
+ [ 196/ 219] blk.7.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
307
+ [ 197/ 219] blk.7.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
308
+ [ 198/ 219] blk.7.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
309
+ [ 199/ 219] blk.7.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
310
+ [ 200/ 219] blk.7.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
311
+ [ 201/ 219] blk.8.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
312
+ [ 202/ 219] blk.8.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
313
+
314
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
315
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
316
+ [ 203/ 219] blk.8.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
317
+ [ 204/ 219] blk.8.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
318
+ [ 205/ 219] blk.8.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
319
+ [ 206/ 219] blk.8.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
320
+ [ 207/ 219] blk.8.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
321
+ [ 208/ 219] blk.8.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
322
+ [ 209/ 219] blk.8.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
323
+ [ 210/ 219] blk.9.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
324
+ [ 211/ 219] blk.9.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
325
+
326
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q4_K - using fallback quantization q5_0
327
+ converting to q5_0 .. size = 21.25 MiB -> 7.30 MiB
328
+ [ 212/ 219] blk.9.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
329
+ [ 213/ 219] blk.9.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q4_K .. size = 21.25 MiB -> 5.98 MiB
330
+ [ 214/ 219] blk.9.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
331
+ [ 215/ 219] blk.9.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
332
+ [ 216/ 219] blk.9.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
333
+ [ 217/ 219] blk.9.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
334
+ [ 218/ 219] blk.9.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q4_K .. size = 8.00 MiB -> 2.25 MiB
335
+ [ 219/ 219] output_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
336
+ llama_model_quantize_internal: model size = 4298.38 MB
337
+ llama_model_quantize_internal: quant size = 1963.81 MB
338
+ llama_model_quantize_internal: WARNING: 24 of 169 tensor(s) required fallback quantization
339
+
340
+ main: quantize time = 9251.91 ms
341
+ main: total time = 9251.91 ms
Q5_K_M_log.txt ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ main: build = 3906 (7eee341b)
2
+ main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
3
+ main: quantizing 'salamandra-2b-instruct_bf16.gguf' to './salamandra-2b-instruct_Q5_K_M.gguf' as Q5_K_M
4
+ llama_model_loader: loaded meta data with 31 key-value pairs and 219 tensors from salamandra-2b-instruct_bf16.gguf (version GGUF V3 (latest))
5
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
6
+ llama_model_loader: - kv 0: general.architecture str = llama
7
+ llama_model_loader: - kv 1: general.type str = model
8
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
9
+ llama_model_loader: - kv 3: general.license str = apache-2.0
10
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
11
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
12
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
13
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
14
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
15
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
16
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
17
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
18
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
19
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
20
+ llama_model_loader: - kv 14: general.file_type u32 = 32
21
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
22
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
23
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
24
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
25
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
26
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
27
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
28
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
29
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
30
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
31
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
32
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
33
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
34
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
35
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
36
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
37
+ llama_model_loader: - type f32: 49 tensors
38
+ llama_model_loader: - type bf16: 170 tensors
39
+ ================================ Have weights data with 168 entries
40
+ [ 1/ 219] output.weight - [ 2048, 256000, 1, 1], type = bf16, size = 1000.000 MB
41
+ [ 2/ 219] token_embd.weight - [ 2048, 256000, 1, 1], type = bf16,
42
+ ====== llama_model_quantize_internal: did not find weights for token_embd.weight
43
+ converting to q5_K .. load_imatrix: imatrix dataset='./imatrix/oscar/imatrix-dataset.txt'
44
+ load_imatrix: loaded 168 importance matrix entries from imatrix/oscar/imatrix.dat computed on 44176 chunks
45
+ prepare_imatrix: have 168 importance matrix entries
46
+ size = 1000.00 MiB -> 343.75 MiB
47
+ [ 3/ 219] blk.0.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
48
+ [ 4/ 219] blk.0.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
49
+
50
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
51
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
52
+ [ 5/ 219] blk.0.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
53
+ [ 6/ 219] blk.0.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
54
+ [ 7/ 219] blk.0.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
55
+ [ 8/ 219] blk.0.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
56
+ [ 9/ 219] blk.0.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
57
+ [ 10/ 219] blk.0.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
58
+ [ 11/ 219] blk.0.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
59
+ [ 12/ 219] blk.1.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
60
+ [ 13/ 219] blk.1.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
61
+
62
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
63
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
64
+ [ 14/ 219] blk.1.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
65
+ [ 15/ 219] blk.1.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
66
+ [ 16/ 219] blk.1.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
67
+ [ 17/ 219] blk.1.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
68
+ [ 18/ 219] blk.1.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
69
+ [ 19/ 219] blk.1.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
70
+ [ 20/ 219] blk.1.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
71
+ [ 21/ 219] blk.10.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
72
+ [ 22/ 219] blk.10.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
73
+
74
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
75
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
76
+ [ 23/ 219] blk.10.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
77
+ [ 24/ 219] blk.10.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
78
+ [ 25/ 219] blk.10.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
79
+ [ 26/ 219] blk.10.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
80
+ [ 27/ 219] blk.10.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
81
+ [ 28/ 219] blk.10.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
82
+ [ 29/ 219] blk.10.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
83
+ [ 30/ 219] blk.11.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
84
+ [ 31/ 219] blk.11.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
85
+
86
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
87
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
88
+ [ 32/ 219] blk.11.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
89
+ [ 33/ 219] blk.11.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
90
+ [ 34/ 219] blk.11.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
91
+ [ 35/ 219] blk.11.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
92
+ [ 36/ 219] blk.11.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
93
+ [ 37/ 219] blk.11.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
94
+ [ 38/ 219] blk.11.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
95
+ [ 39/ 219] blk.12.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
96
+ [ 40/ 219] blk.12.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
97
+
98
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
99
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
100
+ [ 41/ 219] blk.12.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
101
+ [ 42/ 219] blk.12.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
102
+ [ 43/ 219] blk.12.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
103
+ [ 44/ 219] blk.12.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
104
+ [ 45/ 219] blk.12.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
105
+ [ 46/ 219] blk.12.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
106
+ [ 47/ 219] blk.12.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
107
+ [ 48/ 219] blk.13.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
108
+ [ 49/ 219] blk.13.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
109
+
110
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
111
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
112
+ [ 50/ 219] blk.13.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
113
+ [ 51/ 219] blk.13.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
114
+ [ 52/ 219] blk.13.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
115
+ [ 53/ 219] blk.13.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
116
+ [ 54/ 219] blk.13.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
117
+ [ 55/ 219] blk.13.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
118
+ [ 56/ 219] blk.13.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
119
+ [ 57/ 219] blk.14.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
120
+ [ 58/ 219] blk.14.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
121
+
122
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
123
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
124
+ [ 59/ 219] blk.14.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
125
+ [ 60/ 219] blk.14.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
126
+ [ 61/ 219] blk.14.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
127
+ [ 62/ 219] blk.14.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
128
+ [ 63/ 219] blk.14.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
129
+ [ 64/ 219] blk.14.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
130
+ [ 65/ 219] blk.14.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
131
+ [ 66/ 219] blk.15.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
132
+ [ 67/ 219] blk.15.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
133
+
134
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
135
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
136
+ [ 68/ 219] blk.15.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
137
+ [ 69/ 219] blk.15.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
138
+ [ 70/ 219] blk.15.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
139
+ [ 71/ 219] blk.15.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
140
+ [ 72/ 219] blk.15.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
141
+ [ 73/ 219] blk.15.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
142
+ [ 74/ 219] blk.15.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
143
+ [ 75/ 219] blk.16.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
144
+ [ 76/ 219] blk.16.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
145
+
146
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
147
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
148
+ [ 77/ 219] blk.16.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
149
+ [ 78/ 219] blk.16.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
150
+ [ 79/ 219] blk.16.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
151
+ [ 80/ 219] blk.16.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
152
+ [ 81/ 219] blk.16.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
153
+ [ 82/ 219] blk.16.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
154
+ [ 83/ 219] blk.16.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
155
+ [ 84/ 219] blk.17.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
156
+ [ 85/ 219] blk.17.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
157
+
158
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
159
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
160
+ [ 86/ 219] blk.17.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
161
+ [ 87/ 219] blk.17.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
162
+ [ 88/ 219] blk.17.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
163
+ [ 89/ 219] blk.17.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
164
+ [ 90/ 219] blk.17.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
165
+ [ 91/ 219] blk.17.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
166
+ [ 92/ 219] blk.17.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
167
+ [ 93/ 219] blk.18.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
168
+ [ 94/ 219] blk.18.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
169
+
170
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
171
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
172
+ [ 95/ 219] blk.18.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
173
+ [ 96/ 219] blk.18.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
174
+ [ 97/ 219] blk.18.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
175
+ [ 98/ 219] blk.18.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
176
+ [ 99/ 219] blk.18.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
177
+ [ 100/ 219] blk.18.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
178
+ [ 101/ 219] blk.18.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
179
+ [ 102/ 219] blk.19.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
180
+ [ 103/ 219] blk.19.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
181
+
182
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
183
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
184
+ [ 104/ 219] blk.19.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
185
+ [ 105/ 219] blk.19.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
186
+ [ 106/ 219] blk.19.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
187
+ [ 107/ 219] blk.19.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
188
+ [ 108/ 219] blk.19.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
189
+ [ 109/ 219] blk.19.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
190
+ [ 110/ 219] blk.19.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
191
+ [ 111/ 219] blk.2.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
192
+ [ 112/ 219] blk.2.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
193
+
194
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
195
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
196
+ [ 113/ 219] blk.2.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
197
+ [ 114/ 219] blk.2.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
198
+ [ 115/ 219] blk.2.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
199
+ [ 116/ 219] blk.2.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
200
+ [ 117/ 219] blk.2.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
201
+ [ 118/ 219] blk.2.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
202
+ [ 119/ 219] blk.2.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
203
+ [ 120/ 219] blk.20.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
204
+ [ 121/ 219] blk.20.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
205
+
206
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
207
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
208
+ [ 122/ 219] blk.20.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
209
+ [ 123/ 219] blk.20.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
210
+ [ 124/ 219] blk.20.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
211
+ [ 125/ 219] blk.20.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
212
+ [ 126/ 219] blk.20.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
213
+ [ 127/ 219] blk.20.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
214
+ [ 128/ 219] blk.20.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
215
+ [ 129/ 219] blk.21.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
216
+ [ 130/ 219] blk.21.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
217
+
218
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
219
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
220
+ [ 131/ 219] blk.21.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
221
+ [ 132/ 219] blk.21.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
222
+ [ 133/ 219] blk.21.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
223
+ [ 134/ 219] blk.21.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
224
+ [ 135/ 219] blk.21.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
225
+ [ 136/ 219] blk.21.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
226
+ [ 137/ 219] blk.21.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
227
+ [ 138/ 219] blk.22.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
228
+ [ 139/ 219] blk.22.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
229
+
230
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
231
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
232
+ [ 140/ 219] blk.22.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
233
+ [ 141/ 219] blk.22.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
234
+ [ 142/ 219] blk.22.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
235
+ [ 143/ 219] blk.22.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
236
+ [ 144/ 219] blk.22.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
237
+ [ 145/ 219] blk.22.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
238
+ [ 146/ 219] blk.22.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
239
+ [ 147/ 219] blk.23.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
240
+ [ 148/ 219] blk.23.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
241
+
242
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
243
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
244
+ [ 149/ 219] blk.23.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
245
+ [ 150/ 219] blk.23.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
246
+ [ 151/ 219] blk.23.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
247
+ [ 152/ 219] blk.23.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
248
+ [ 153/ 219] blk.23.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
249
+ [ 154/ 219] blk.23.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
250
+ [ 155/ 219] blk.23.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
251
+ [ 156/ 219] blk.3.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
252
+ [ 157/ 219] blk.3.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
253
+
254
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
255
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
256
+ [ 158/ 219] blk.3.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
257
+ [ 159/ 219] blk.3.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
258
+ [ 160/ 219] blk.3.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
259
+ [ 161/ 219] blk.3.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
260
+ [ 162/ 219] blk.3.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
261
+ [ 163/ 219] blk.3.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
262
+ [ 164/ 219] blk.3.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
263
+ [ 165/ 219] blk.4.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
264
+ [ 166/ 219] blk.4.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
265
+
266
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
267
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
268
+ [ 167/ 219] blk.4.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
269
+ [ 168/ 219] blk.4.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
270
+ [ 169/ 219] blk.4.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
271
+ [ 170/ 219] blk.4.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
272
+ [ 171/ 219] blk.4.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
273
+ [ 172/ 219] blk.4.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
274
+ [ 173/ 219] blk.4.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
275
+ [ 174/ 219] blk.5.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
276
+ [ 175/ 219] blk.5.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
277
+
278
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
279
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
280
+ [ 176/ 219] blk.5.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
281
+ [ 177/ 219] blk.5.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
282
+ [ 178/ 219] blk.5.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
283
+ [ 179/ 219] blk.5.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
284
+ [ 180/ 219] blk.5.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
285
+ [ 181/ 219] blk.5.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
286
+ [ 182/ 219] blk.5.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
287
+ [ 183/ 219] blk.6.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
288
+ [ 184/ 219] blk.6.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
289
+
290
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
291
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
292
+ [ 185/ 219] blk.6.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
293
+ [ 186/ 219] blk.6.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
294
+ [ 187/ 219] blk.6.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
295
+ [ 188/ 219] blk.6.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
296
+ [ 189/ 219] blk.6.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
297
+ [ 190/ 219] blk.6.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
298
+ [ 191/ 219] blk.6.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
299
+ [ 192/ 219] blk.7.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
300
+ [ 193/ 219] blk.7.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
301
+
302
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
303
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
304
+ [ 194/ 219] blk.7.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
305
+ [ 195/ 219] blk.7.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
306
+ [ 196/ 219] blk.7.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
307
+ [ 197/ 219] blk.7.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
308
+ [ 198/ 219] blk.7.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
309
+ [ 199/ 219] blk.7.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
310
+ [ 200/ 219] blk.7.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
311
+ [ 201/ 219] blk.8.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
312
+ [ 202/ 219] blk.8.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
313
+
314
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
315
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
316
+ [ 203/ 219] blk.8.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
317
+ [ 204/ 219] blk.8.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
318
+ [ 205/ 219] blk.8.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
319
+ [ 206/ 219] blk.8.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
320
+ [ 207/ 219] blk.8.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
321
+ [ 208/ 219] blk.8.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
322
+ [ 209/ 219] blk.8.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
323
+ [ 210/ 219] blk.9.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
324
+ [ 211/ 219] blk.9.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
325
+
326
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
327
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
328
+ [ 212/ 219] blk.9.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
329
+ [ 213/ 219] blk.9.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
330
+ [ 214/ 219] blk.9.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
331
+ [ 215/ 219] blk.9.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
332
+ [ 216/ 219] blk.9.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
333
+ [ 217/ 219] blk.9.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
334
+ [ 218/ 219] blk.9.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
335
+ [ 219/ 219] output_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
336
+ llama_model_quantize_internal: model size = 4298.38 MB
337
+ llama_model_quantize_internal: quant size = 2196.23 MB
338
+ llama_model_quantize_internal: WARNING: 24 of 169 tensor(s) required fallback quantization
339
+
340
+ main: quantize time = 9470.02 ms
341
+ main: total time = 9470.02 ms
Q5_K_S_log.txt ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ main: build = 3906 (7eee341b)
2
+ main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
3
+ main: quantizing 'salamandra-2b-instruct_bf16.gguf' to './salamandra-2b-instruct_Q5_K_S.gguf' as Q5_K_S
4
+ llama_model_loader: loaded meta data with 31 key-value pairs and 219 tensors from salamandra-2b-instruct_bf16.gguf (version GGUF V3 (latest))
5
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
6
+ llama_model_loader: - kv 0: general.architecture str = llama
7
+ llama_model_loader: - kv 1: general.type str = model
8
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
9
+ llama_model_loader: - kv 3: general.license str = apache-2.0
10
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
11
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
12
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
13
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
14
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
15
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
16
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
17
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
18
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
19
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
20
+ llama_model_loader: - kv 14: general.file_type u32 = 32
21
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
22
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
23
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
24
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
25
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
26
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
27
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
28
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
29
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
30
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
31
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
32
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
33
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
34
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
35
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
36
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
37
+ llama_model_loader: - type f32: 49 tensors
38
+ llama_model_loader: - type bf16: 170 tensors
39
+ ================================ Have weights data with 168 entries
40
+ [ 1/ 219] output.weight - [ 2048, 256000, 1, 1], type = bf16, size = 1000.000 MB
41
+ [ 2/ 219] token_embd.weight - [ 2048, 256000, 1, 1], type = bf16,
42
+ ====== llama_model_quantize_internal: did not find weights for token_embd.weight
43
+ converting to q5_K .. load_imatrix: imatrix dataset='./imatrix/oscar/imatrix-dataset.txt'
44
+ load_imatrix: loaded 168 importance matrix entries from imatrix/oscar/imatrix.dat computed on 44176 chunks
45
+ prepare_imatrix: have 168 importance matrix entries
46
+ size = 1000.00 MiB -> 343.75 MiB
47
+ [ 3/ 219] blk.0.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
48
+ [ 4/ 219] blk.0.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
49
+
50
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
51
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
52
+ [ 5/ 219] blk.0.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
53
+ [ 6/ 219] blk.0.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
54
+ [ 7/ 219] blk.0.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
55
+ [ 8/ 219] blk.0.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
56
+ [ 9/ 219] blk.0.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
57
+ [ 10/ 219] blk.0.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
58
+ [ 11/ 219] blk.0.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
59
+ [ 12/ 219] blk.1.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
60
+ [ 13/ 219] blk.1.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
61
+
62
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
63
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
64
+ [ 14/ 219] blk.1.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
65
+ [ 15/ 219] blk.1.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
66
+ [ 16/ 219] blk.1.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
67
+ [ 17/ 219] blk.1.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
68
+ [ 18/ 219] blk.1.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
69
+ [ 19/ 219] blk.1.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
70
+ [ 20/ 219] blk.1.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
71
+ [ 21/ 219] blk.10.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
72
+ [ 22/ 219] blk.10.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
73
+
74
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
75
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
76
+ [ 23/ 219] blk.10.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
77
+ [ 24/ 219] blk.10.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
78
+ [ 25/ 219] blk.10.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
79
+ [ 26/ 219] blk.10.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
80
+ [ 27/ 219] blk.10.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
81
+ [ 28/ 219] blk.10.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
82
+ [ 29/ 219] blk.10.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
83
+ [ 30/ 219] blk.11.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
84
+ [ 31/ 219] blk.11.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
85
+
86
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
87
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
88
+ [ 32/ 219] blk.11.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
89
+ [ 33/ 219] blk.11.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
90
+ [ 34/ 219] blk.11.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
91
+ [ 35/ 219] blk.11.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
92
+ [ 36/ 219] blk.11.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
93
+ [ 37/ 219] blk.11.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
94
+ [ 38/ 219] blk.11.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
95
+ [ 39/ 219] blk.12.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
96
+ [ 40/ 219] blk.12.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
97
+
98
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
99
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
100
+ [ 41/ 219] blk.12.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
101
+ [ 42/ 219] blk.12.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
102
+ [ 43/ 219] blk.12.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
103
+ [ 44/ 219] blk.12.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
104
+ [ 45/ 219] blk.12.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
105
+ [ 46/ 219] blk.12.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
106
+ [ 47/ 219] blk.12.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
107
+ [ 48/ 219] blk.13.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
108
+ [ 49/ 219] blk.13.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
109
+
110
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
111
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
112
+ [ 50/ 219] blk.13.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
113
+ [ 51/ 219] blk.13.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
114
+ [ 52/ 219] blk.13.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
115
+ [ 53/ 219] blk.13.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
116
+ [ 54/ 219] blk.13.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
117
+ [ 55/ 219] blk.13.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
118
+ [ 56/ 219] blk.13.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
119
+ [ 57/ 219] blk.14.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
120
+ [ 58/ 219] blk.14.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
121
+
122
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
123
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
124
+ [ 59/ 219] blk.14.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
125
+ [ 60/ 219] blk.14.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
126
+ [ 61/ 219] blk.14.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
127
+ [ 62/ 219] blk.14.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
128
+ [ 63/ 219] blk.14.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
129
+ [ 64/ 219] blk.14.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
130
+ [ 65/ 219] blk.14.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
131
+ [ 66/ 219] blk.15.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
132
+ [ 67/ 219] blk.15.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
133
+
134
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
135
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
136
+ [ 68/ 219] blk.15.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
137
+ [ 69/ 219] blk.15.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
138
+ [ 70/ 219] blk.15.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
139
+ [ 71/ 219] blk.15.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
140
+ [ 72/ 219] blk.15.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
141
+ [ 73/ 219] blk.15.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
142
+ [ 74/ 219] blk.15.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
143
+ [ 75/ 219] blk.16.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
144
+ [ 76/ 219] blk.16.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
145
+
146
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
147
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
148
+ [ 77/ 219] blk.16.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
149
+ [ 78/ 219] blk.16.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
150
+ [ 79/ 219] blk.16.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
151
+ [ 80/ 219] blk.16.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
152
+ [ 81/ 219] blk.16.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
153
+ [ 82/ 219] blk.16.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
154
+ [ 83/ 219] blk.16.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
155
+ [ 84/ 219] blk.17.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
156
+ [ 85/ 219] blk.17.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
157
+
158
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
159
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
160
+ [ 86/ 219] blk.17.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
161
+ [ 87/ 219] blk.17.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
162
+ [ 88/ 219] blk.17.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
163
+ [ 89/ 219] blk.17.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
164
+ [ 90/ 219] blk.17.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
165
+ [ 91/ 219] blk.17.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
166
+ [ 92/ 219] blk.17.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
167
+ [ 93/ 219] blk.18.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
168
+ [ 94/ 219] blk.18.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
169
+
170
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
171
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
172
+ [ 95/ 219] blk.18.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
173
+ [ 96/ 219] blk.18.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
174
+ [ 97/ 219] blk.18.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
175
+ [ 98/ 219] blk.18.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
176
+ [ 99/ 219] blk.18.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
177
+ [ 100/ 219] blk.18.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
178
+ [ 101/ 219] blk.18.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
179
+ [ 102/ 219] blk.19.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
180
+ [ 103/ 219] blk.19.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
181
+
182
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
183
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
184
+ [ 104/ 219] blk.19.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
185
+ [ 105/ 219] blk.19.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
186
+ [ 106/ 219] blk.19.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
187
+ [ 107/ 219] blk.19.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
188
+ [ 108/ 219] blk.19.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
189
+ [ 109/ 219] blk.19.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
190
+ [ 110/ 219] blk.19.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
191
+ [ 111/ 219] blk.2.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
192
+ [ 112/ 219] blk.2.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
193
+
194
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
195
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
196
+ [ 113/ 219] blk.2.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
197
+ [ 114/ 219] blk.2.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
198
+ [ 115/ 219] blk.2.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
199
+ [ 116/ 219] blk.2.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
200
+ [ 117/ 219] blk.2.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
201
+ [ 118/ 219] blk.2.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
202
+ [ 119/ 219] blk.2.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
203
+ [ 120/ 219] blk.20.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
204
+ [ 121/ 219] blk.20.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
205
+
206
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
207
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
208
+ [ 122/ 219] blk.20.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
209
+ [ 123/ 219] blk.20.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
210
+ [ 124/ 219] blk.20.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
211
+ [ 125/ 219] blk.20.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
212
+ [ 126/ 219] blk.20.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
213
+ [ 127/ 219] blk.20.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
214
+ [ 128/ 219] blk.20.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
215
+ [ 129/ 219] blk.21.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
216
+ [ 130/ 219] blk.21.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
217
+
218
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
219
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
220
+ [ 131/ 219] blk.21.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
221
+ [ 132/ 219] blk.21.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
222
+ [ 133/ 219] blk.21.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
223
+ [ 134/ 219] blk.21.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
224
+ [ 135/ 219] blk.21.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
225
+ [ 136/ 219] blk.21.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
226
+ [ 137/ 219] blk.21.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
227
+ [ 138/ 219] blk.22.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
228
+ [ 139/ 219] blk.22.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
229
+
230
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
231
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
232
+ [ 140/ 219] blk.22.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
233
+ [ 141/ 219] blk.22.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
234
+ [ 142/ 219] blk.22.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
235
+ [ 143/ 219] blk.22.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
236
+ [ 144/ 219] blk.22.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
237
+ [ 145/ 219] blk.22.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
238
+ [ 146/ 219] blk.22.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
239
+ [ 147/ 219] blk.23.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
240
+ [ 148/ 219] blk.23.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
241
+
242
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
243
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
244
+ [ 149/ 219] blk.23.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
245
+ [ 150/ 219] blk.23.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
246
+ [ 151/ 219] blk.23.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
247
+ [ 152/ 219] blk.23.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
248
+ [ 153/ 219] blk.23.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
249
+ [ 154/ 219] blk.23.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
250
+ [ 155/ 219] blk.23.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
251
+ [ 156/ 219] blk.3.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
252
+ [ 157/ 219] blk.3.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
253
+
254
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
255
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
256
+ [ 158/ 219] blk.3.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
257
+ [ 159/ 219] blk.3.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
258
+ [ 160/ 219] blk.3.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
259
+ [ 161/ 219] blk.3.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
260
+ [ 162/ 219] blk.3.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
261
+ [ 163/ 219] blk.3.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
262
+ [ 164/ 219] blk.3.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
263
+ [ 165/ 219] blk.4.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
264
+ [ 166/ 219] blk.4.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
265
+
266
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
267
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
268
+ [ 167/ 219] blk.4.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
269
+ [ 168/ 219] blk.4.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
270
+ [ 169/ 219] blk.4.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
271
+ [ 170/ 219] blk.4.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
272
+ [ 171/ 219] blk.4.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
273
+ [ 172/ 219] blk.4.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
274
+ [ 173/ 219] blk.4.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
275
+ [ 174/ 219] blk.5.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
276
+ [ 175/ 219] blk.5.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
277
+
278
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
279
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
280
+ [ 176/ 219] blk.5.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
281
+ [ 177/ 219] blk.5.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
282
+ [ 178/ 219] blk.5.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
283
+ [ 179/ 219] blk.5.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
284
+ [ 180/ 219] blk.5.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
285
+ [ 181/ 219] blk.5.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
286
+ [ 182/ 219] blk.5.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
287
+ [ 183/ 219] blk.6.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
288
+ [ 184/ 219] blk.6.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
289
+
290
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
291
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
292
+ [ 185/ 219] blk.6.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
293
+ [ 186/ 219] blk.6.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
294
+ [ 187/ 219] blk.6.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
295
+ [ 188/ 219] blk.6.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
296
+ [ 189/ 219] blk.6.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
297
+ [ 190/ 219] blk.6.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
298
+ [ 191/ 219] blk.6.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
299
+ [ 192/ 219] blk.7.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
300
+ [ 193/ 219] blk.7.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
301
+
302
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
303
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
304
+ [ 194/ 219] blk.7.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
305
+ [ 195/ 219] blk.7.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
306
+ [ 196/ 219] blk.7.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
307
+ [ 197/ 219] blk.7.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
308
+ [ 198/ 219] blk.7.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
309
+ [ 199/ 219] blk.7.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
310
+ [ 200/ 219] blk.7.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
311
+ [ 201/ 219] blk.8.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
312
+ [ 202/ 219] blk.8.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
313
+
314
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
315
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
316
+ [ 203/ 219] blk.8.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
317
+ [ 204/ 219] blk.8.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
318
+ [ 205/ 219] blk.8.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
319
+ [ 206/ 219] blk.8.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
320
+ [ 207/ 219] blk.8.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
321
+ [ 208/ 219] blk.8.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
322
+ [ 209/ 219] blk.8.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
323
+ [ 210/ 219] blk.9.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
324
+ [ 211/ 219] blk.9.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
325
+
326
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q5_K - using fallback quantization q5_1
327
+ converting to q5_1 .. size = 21.25 MiB -> 7.97 MiB
328
+ [ 212/ 219] blk.9.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
329
+ [ 213/ 219] blk.9.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q5_K .. size = 21.25 MiB -> 7.30 MiB
330
+ [ 214/ 219] blk.9.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
331
+ [ 215/ 219] blk.9.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
332
+ [ 216/ 219] blk.9.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
333
+ [ 217/ 219] blk.9.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
334
+ [ 218/ 219] blk.9.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
335
+ [ 219/ 219] output_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
336
+ llama_model_quantize_internal: model size = 4298.38 MB
337
+ llama_model_quantize_internal: quant size = 2150.01 MB
338
+ llama_model_quantize_internal: WARNING: 24 of 169 tensor(s) required fallback quantization
339
+
340
+ main: quantize time = 10218.60 ms
341
+ main: total time = 10218.60 ms
Q6_K_log.txt ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ main: build = 3906 (7eee341b)
2
+ main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
3
+ main: quantizing 'salamandra-2b-instruct_bf16.gguf' to './salamandra-2b-instruct_Q6_K.gguf' as Q6_K
4
+ llama_model_loader: loaded meta data with 31 key-value pairs and 219 tensors from salamandra-2b-instruct_bf16.gguf (version GGUF V3 (latest))
5
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
6
+ llama_model_loader: - kv 0: general.architecture str = llama
7
+ llama_model_loader: - kv 1: general.type str = model
8
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
9
+ llama_model_loader: - kv 3: general.license str = apache-2.0
10
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
11
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
12
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
13
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
14
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
15
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
16
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
17
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
18
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
19
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
20
+ llama_model_loader: - kv 14: general.file_type u32 = 32
21
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
22
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
23
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
24
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
25
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
26
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
27
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
28
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
29
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
30
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
31
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
32
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
33
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
34
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
35
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
36
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
37
+ llama_model_loader: - type f32: 49 tensors
38
+ llama_model_loader: - type bf16: 170 tensors
39
+ ================================ Have weights data with 168 entries
40
+ [ 1/ 219] output.weight - [ 2048, 256000, 1, 1], type = bf16, size = 1000.000 MB
41
+ [ 2/ 219] token_embd.weight - [ 2048, 256000, 1, 1], type = bf16,
42
+ ====== llama_model_quantize_internal: did not find weights for token_embd.weight
43
+ converting to q6_K .. load_imatrix: imatrix dataset='./imatrix/oscar/imatrix-dataset.txt'
44
+ load_imatrix: loaded 168 importance matrix entries from imatrix/oscar/imatrix.dat computed on 44176 chunks
45
+ prepare_imatrix: have 168 importance matrix entries
46
+ size = 1000.00 MiB -> 410.16 MiB
47
+ [ 3/ 219] blk.0.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
48
+ [ 4/ 219] blk.0.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
49
+
50
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
51
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
52
+ [ 5/ 219] blk.0.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
53
+ [ 6/ 219] blk.0.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
54
+ [ 7/ 219] blk.0.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
55
+ [ 8/ 219] blk.0.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
56
+ [ 9/ 219] blk.0.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
57
+ [ 10/ 219] blk.0.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
58
+ [ 11/ 219] blk.0.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
59
+ [ 12/ 219] blk.1.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
60
+ [ 13/ 219] blk.1.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
61
+
62
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
63
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
64
+ [ 14/ 219] blk.1.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
65
+ [ 15/ 219] blk.1.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
66
+ [ 16/ 219] blk.1.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
67
+ [ 17/ 219] blk.1.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
68
+ [ 18/ 219] blk.1.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
69
+ [ 19/ 219] blk.1.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
70
+ [ 20/ 219] blk.1.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
71
+ [ 21/ 219] blk.10.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
72
+ [ 22/ 219] blk.10.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
73
+
74
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
75
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
76
+ [ 23/ 219] blk.10.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
77
+ [ 24/ 219] blk.10.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
78
+ [ 25/ 219] blk.10.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
79
+ [ 26/ 219] blk.10.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
80
+ [ 27/ 219] blk.10.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
81
+ [ 28/ 219] blk.10.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
82
+ [ 29/ 219] blk.10.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
83
+ [ 30/ 219] blk.11.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
84
+ [ 31/ 219] blk.11.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
85
+
86
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
87
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
88
+ [ 32/ 219] blk.11.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
89
+ [ 33/ 219] blk.11.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
90
+ [ 34/ 219] blk.11.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
91
+ [ 35/ 219] blk.11.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
92
+ [ 36/ 219] blk.11.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
93
+ [ 37/ 219] blk.11.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
94
+ [ 38/ 219] blk.11.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
95
+ [ 39/ 219] blk.12.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
96
+ [ 40/ 219] blk.12.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
97
+
98
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
99
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
100
+ [ 41/ 219] blk.12.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
101
+ [ 42/ 219] blk.12.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
102
+ [ 43/ 219] blk.12.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
103
+ [ 44/ 219] blk.12.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
104
+ [ 45/ 219] blk.12.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
105
+ [ 46/ 219] blk.12.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
106
+ [ 47/ 219] blk.12.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
107
+ [ 48/ 219] blk.13.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
108
+ [ 49/ 219] blk.13.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
109
+
110
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
111
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
112
+ [ 50/ 219] blk.13.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
113
+ [ 51/ 219] blk.13.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
114
+ [ 52/ 219] blk.13.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
115
+ [ 53/ 219] blk.13.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
116
+ [ 54/ 219] blk.13.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
117
+ [ 55/ 219] blk.13.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
118
+ [ 56/ 219] blk.13.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
119
+ [ 57/ 219] blk.14.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
120
+ [ 58/ 219] blk.14.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
121
+
122
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
123
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
124
+ [ 59/ 219] blk.14.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
125
+ [ 60/ 219] blk.14.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
126
+ [ 61/ 219] blk.14.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
127
+ [ 62/ 219] blk.14.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
128
+ [ 63/ 219] blk.14.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
129
+ [ 64/ 219] blk.14.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
130
+ [ 65/ 219] blk.14.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
131
+ [ 66/ 219] blk.15.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
132
+ [ 67/ 219] blk.15.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
133
+
134
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
135
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
136
+ [ 68/ 219] blk.15.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
137
+ [ 69/ 219] blk.15.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
138
+ [ 70/ 219] blk.15.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
139
+ [ 71/ 219] blk.15.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
140
+ [ 72/ 219] blk.15.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
141
+ [ 73/ 219] blk.15.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
142
+ [ 74/ 219] blk.15.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
143
+ [ 75/ 219] blk.16.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
144
+ [ 76/ 219] blk.16.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
145
+
146
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
147
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
148
+ [ 77/ 219] blk.16.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
149
+ [ 78/ 219] blk.16.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
150
+ [ 79/ 219] blk.16.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
151
+ [ 80/ 219] blk.16.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
152
+ [ 81/ 219] blk.16.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
153
+ [ 82/ 219] blk.16.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
154
+ [ 83/ 219] blk.16.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
155
+ [ 84/ 219] blk.17.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
156
+ [ 85/ 219] blk.17.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
157
+
158
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
159
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
160
+ [ 86/ 219] blk.17.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
161
+ [ 87/ 219] blk.17.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
162
+ [ 88/ 219] blk.17.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
163
+ [ 89/ 219] blk.17.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
164
+ [ 90/ 219] blk.17.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
165
+ [ 91/ 219] blk.17.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
166
+ [ 92/ 219] blk.17.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
167
+ [ 93/ 219] blk.18.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
168
+ [ 94/ 219] blk.18.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
169
+
170
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
171
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
172
+ [ 95/ 219] blk.18.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
173
+ [ 96/ 219] blk.18.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
174
+ [ 97/ 219] blk.18.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
175
+ [ 98/ 219] blk.18.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
176
+ [ 99/ 219] blk.18.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
177
+ [ 100/ 219] blk.18.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
178
+ [ 101/ 219] blk.18.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
179
+ [ 102/ 219] blk.19.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
180
+ [ 103/ 219] blk.19.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
181
+
182
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
183
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
184
+ [ 104/ 219] blk.19.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
185
+ [ 105/ 219] blk.19.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
186
+ [ 106/ 219] blk.19.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
187
+ [ 107/ 219] blk.19.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
188
+ [ 108/ 219] blk.19.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
189
+ [ 109/ 219] blk.19.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
190
+ [ 110/ 219] blk.19.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
191
+ [ 111/ 219] blk.2.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
192
+ [ 112/ 219] blk.2.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
193
+
194
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
195
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
196
+ [ 113/ 219] blk.2.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
197
+ [ 114/ 219] blk.2.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
198
+ [ 115/ 219] blk.2.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
199
+ [ 116/ 219] blk.2.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
200
+ [ 117/ 219] blk.2.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
201
+ [ 118/ 219] blk.2.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
202
+ [ 119/ 219] blk.2.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
203
+ [ 120/ 219] blk.20.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
204
+ [ 121/ 219] blk.20.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
205
+
206
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
207
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
208
+ [ 122/ 219] blk.20.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
209
+ [ 123/ 219] blk.20.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
210
+ [ 124/ 219] blk.20.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
211
+ [ 125/ 219] blk.20.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
212
+ [ 126/ 219] blk.20.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
213
+ [ 127/ 219] blk.20.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
214
+ [ 128/ 219] blk.20.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
215
+ [ 129/ 219] blk.21.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
216
+ [ 130/ 219] blk.21.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
217
+
218
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
219
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
220
+ [ 131/ 219] blk.21.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
221
+ [ 132/ 219] blk.21.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
222
+ [ 133/ 219] blk.21.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
223
+ [ 134/ 219] blk.21.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
224
+ [ 135/ 219] blk.21.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
225
+ [ 136/ 219] blk.21.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
226
+ [ 137/ 219] blk.21.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
227
+ [ 138/ 219] blk.22.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
228
+ [ 139/ 219] blk.22.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
229
+
230
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
231
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
232
+ [ 140/ 219] blk.22.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
233
+ [ 141/ 219] blk.22.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
234
+ [ 142/ 219] blk.22.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
235
+ [ 143/ 219] blk.22.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
236
+ [ 144/ 219] blk.22.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
237
+ [ 145/ 219] blk.22.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
238
+ [ 146/ 219] blk.22.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
239
+ [ 147/ 219] blk.23.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
240
+ [ 148/ 219] blk.23.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
241
+
242
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
243
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
244
+ [ 149/ 219] blk.23.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
245
+ [ 150/ 219] blk.23.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
246
+ [ 151/ 219] blk.23.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
247
+ [ 152/ 219] blk.23.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
248
+ [ 153/ 219] blk.23.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
249
+ [ 154/ 219] blk.23.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
250
+ [ 155/ 219] blk.23.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
251
+ [ 156/ 219] blk.3.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
252
+ [ 157/ 219] blk.3.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
253
+
254
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
255
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
256
+ [ 158/ 219] blk.3.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
257
+ [ 159/ 219] blk.3.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
258
+ [ 160/ 219] blk.3.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
259
+ [ 161/ 219] blk.3.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
260
+ [ 162/ 219] blk.3.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
261
+ [ 163/ 219] blk.3.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
262
+ [ 164/ 219] blk.3.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
263
+ [ 165/ 219] blk.4.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
264
+ [ 166/ 219] blk.4.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
265
+
266
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
267
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
268
+ [ 167/ 219] blk.4.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
269
+ [ 168/ 219] blk.4.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
270
+ [ 169/ 219] blk.4.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
271
+ [ 170/ 219] blk.4.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
272
+ [ 171/ 219] blk.4.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
273
+ [ 172/ 219] blk.4.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
274
+ [ 173/ 219] blk.4.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
275
+ [ 174/ 219] blk.5.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
276
+ [ 175/ 219] blk.5.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
277
+
278
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
279
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
280
+ [ 176/ 219] blk.5.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
281
+ [ 177/ 219] blk.5.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
282
+ [ 178/ 219] blk.5.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
283
+ [ 179/ 219] blk.5.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
284
+ [ 180/ 219] blk.5.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
285
+ [ 181/ 219] blk.5.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
286
+ [ 182/ 219] blk.5.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
287
+ [ 183/ 219] blk.6.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
288
+ [ 184/ 219] blk.6.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
289
+
290
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
291
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
292
+ [ 185/ 219] blk.6.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
293
+ [ 186/ 219] blk.6.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
294
+ [ 187/ 219] blk.6.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
295
+ [ 188/ 219] blk.6.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
296
+ [ 189/ 219] blk.6.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
297
+ [ 190/ 219] blk.6.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
298
+ [ 191/ 219] blk.6.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
299
+ [ 192/ 219] blk.7.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
300
+ [ 193/ 219] blk.7.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
301
+
302
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
303
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
304
+ [ 194/ 219] blk.7.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
305
+ [ 195/ 219] blk.7.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
306
+ [ 196/ 219] blk.7.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
307
+ [ 197/ 219] blk.7.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
308
+ [ 198/ 219] blk.7.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
309
+ [ 199/ 219] blk.7.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
310
+ [ 200/ 219] blk.7.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
311
+ [ 201/ 219] blk.8.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
312
+ [ 202/ 219] blk.8.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
313
+
314
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
315
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
316
+ [ 203/ 219] blk.8.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
317
+ [ 204/ 219] blk.8.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
318
+ [ 205/ 219] blk.8.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
319
+ [ 206/ 219] blk.8.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
320
+ [ 207/ 219] blk.8.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
321
+ [ 208/ 219] blk.8.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
322
+ [ 209/ 219] blk.8.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
323
+ [ 210/ 219] blk.9.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
324
+ [ 211/ 219] blk.9.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16,
325
+
326
+ llama_tensor_get_type : tensor cols 5440 x 2048 are not divisible by 256, required for q6_K - using fallback quantization q8_0
327
+ converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
328
+ [ 212/ 219] blk.9.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
329
+ [ 213/ 219] blk.9.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q6_K .. size = 21.25 MiB -> 8.72 MiB
330
+ [ 214/ 219] blk.9.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
331
+ [ 215/ 219] blk.9.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
332
+ [ 216/ 219] blk.9.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
333
+ [ 217/ 219] blk.9.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
334
+ [ 218/ 219] blk.9.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
335
+ [ 219/ 219] output_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
336
+ llama_model_quantize_internal: model size = 4298.38 MB
337
+ llama_model_quantize_internal: quant size = 2414.84 MB
338
+ llama_model_quantize_internal: WARNING: 24 of 169 tensor(s) required fallback quantization
339
+
340
+ main: quantize time = 4824.77 ms
341
+ main: total time = 4824.77 ms
Q8_0_log.txt ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ main: build = 3906 (7eee341b)
2
+ main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
3
+ main: quantizing 'salamandra-2b-instruct_bf16.gguf' to './salamandra-2b-instruct_Q8_0.gguf' as Q8_0
4
+ llama_model_loader: loaded meta data with 31 key-value pairs and 219 tensors from salamandra-2b-instruct_bf16.gguf (version GGUF V3 (latest))
5
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
6
+ llama_model_loader: - kv 0: general.architecture str = llama
7
+ llama_model_loader: - kv 1: general.type str = model
8
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
9
+ llama_model_loader: - kv 3: general.license str = apache-2.0
10
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
11
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
12
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
13
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
14
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
15
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
16
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
17
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
18
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
19
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
20
+ llama_model_loader: - kv 14: general.file_type u32 = 32
21
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
22
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
23
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
24
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
25
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
26
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
27
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
28
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
29
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
30
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
31
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
32
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
33
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
34
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
35
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
36
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
37
+ llama_model_loader: - type f32: 49 tensors
38
+ llama_model_loader: - type bf16: 170 tensors
39
+ ================================ Have weights data with 168 entries
40
+ [ 1/ 219] output.weight - [ 2048, 256000, 1, 1], type = bf16, size = 1000.000 MB
41
+ [ 2/ 219] token_embd.weight - [ 2048, 256000, 1, 1], type = bf16,
42
+ ====== llama_model_quantize_internal: did not find weights for token_embd.weight
43
+ converting to q8_0 .. load_imatrix: imatrix dataset='./imatrix/oscar/imatrix-dataset.txt'
44
+ load_imatrix: loaded 168 importance matrix entries from imatrix/oscar/imatrix.dat computed on 44176 chunks
45
+ prepare_imatrix: have 168 importance matrix entries
46
+ size = 1000.00 MiB -> 531.25 MiB
47
+ [ 3/ 219] blk.0.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
48
+ [ 4/ 219] blk.0.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
49
+ [ 5/ 219] blk.0.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
50
+ [ 6/ 219] blk.0.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
51
+ [ 7/ 219] blk.0.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
52
+ [ 8/ 219] blk.0.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
53
+ [ 9/ 219] blk.0.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
54
+ [ 10/ 219] blk.0.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
55
+ [ 11/ 219] blk.0.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
56
+ [ 12/ 219] blk.1.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
57
+ [ 13/ 219] blk.1.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
58
+ [ 14/ 219] blk.1.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
59
+ [ 15/ 219] blk.1.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
60
+ [ 16/ 219] blk.1.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
61
+ [ 17/ 219] blk.1.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
62
+ [ 18/ 219] blk.1.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
63
+ [ 19/ 219] blk.1.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
64
+ [ 20/ 219] blk.1.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
65
+ [ 21/ 219] blk.10.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
66
+ [ 22/ 219] blk.10.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
67
+ [ 23/ 219] blk.10.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
68
+ [ 24/ 219] blk.10.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
69
+ [ 25/ 219] blk.10.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
70
+ [ 26/ 219] blk.10.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
71
+ [ 27/ 219] blk.10.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
72
+ [ 28/ 219] blk.10.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
73
+ [ 29/ 219] blk.10.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
74
+ [ 30/ 219] blk.11.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
75
+ [ 31/ 219] blk.11.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
76
+ [ 32/ 219] blk.11.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
77
+ [ 33/ 219] blk.11.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
78
+ [ 34/ 219] blk.11.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
79
+ [ 35/ 219] blk.11.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
80
+ [ 36/ 219] blk.11.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
81
+ [ 37/ 219] blk.11.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
82
+ [ 38/ 219] blk.11.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
83
+ [ 39/ 219] blk.12.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
84
+ [ 40/ 219] blk.12.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
85
+ [ 41/ 219] blk.12.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
86
+ [ 42/ 219] blk.12.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
87
+ [ 43/ 219] blk.12.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
88
+ [ 44/ 219] blk.12.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
89
+ [ 45/ 219] blk.12.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
90
+ [ 46/ 219] blk.12.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
91
+ [ 47/ 219] blk.12.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
92
+ [ 48/ 219] blk.13.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
93
+ [ 49/ 219] blk.13.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
94
+ [ 50/ 219] blk.13.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
95
+ [ 51/ 219] blk.13.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
96
+ [ 52/ 219] blk.13.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
97
+ [ 53/ 219] blk.13.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
98
+ [ 54/ 219] blk.13.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
99
+ [ 55/ 219] blk.13.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
100
+ [ 56/ 219] blk.13.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
101
+ [ 57/ 219] blk.14.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
102
+ [ 58/ 219] blk.14.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
103
+ [ 59/ 219] blk.14.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
104
+ [ 60/ 219] blk.14.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
105
+ [ 61/ 219] blk.14.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
106
+ [ 62/ 219] blk.14.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
107
+ [ 63/ 219] blk.14.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
108
+ [ 64/ 219] blk.14.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
109
+ [ 65/ 219] blk.14.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
110
+ [ 66/ 219] blk.15.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
111
+ [ 67/ 219] blk.15.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
112
+ [ 68/ 219] blk.15.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
113
+ [ 69/ 219] blk.15.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
114
+ [ 70/ 219] blk.15.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
115
+ [ 71/ 219] blk.15.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
116
+ [ 72/ 219] blk.15.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
117
+ [ 73/ 219] blk.15.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
118
+ [ 74/ 219] blk.15.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
119
+ [ 75/ 219] blk.16.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
120
+ [ 76/ 219] blk.16.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
121
+ [ 77/ 219] blk.16.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
122
+ [ 78/ 219] blk.16.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
123
+ [ 79/ 219] blk.16.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
124
+ [ 80/ 219] blk.16.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
125
+ [ 81/ 219] blk.16.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
126
+ [ 82/ 219] blk.16.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
127
+ [ 83/ 219] blk.16.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
128
+ [ 84/ 219] blk.17.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
129
+ [ 85/ 219] blk.17.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
130
+ [ 86/ 219] blk.17.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
131
+ [ 87/ 219] blk.17.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
132
+ [ 88/ 219] blk.17.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
133
+ [ 89/ 219] blk.17.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
134
+ [ 90/ 219] blk.17.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
135
+ [ 91/ 219] blk.17.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
136
+ [ 92/ 219] blk.17.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
137
+ [ 93/ 219] blk.18.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
138
+ [ 94/ 219] blk.18.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
139
+ [ 95/ 219] blk.18.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
140
+ [ 96/ 219] blk.18.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
141
+ [ 97/ 219] blk.18.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
142
+ [ 98/ 219] blk.18.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
143
+ [ 99/ 219] blk.18.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
144
+ [ 100/ 219] blk.18.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
145
+ [ 101/ 219] blk.18.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
146
+ [ 102/ 219] blk.19.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
147
+ [ 103/ 219] blk.19.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
148
+ [ 104/ 219] blk.19.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
149
+ [ 105/ 219] blk.19.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
150
+ [ 106/ 219] blk.19.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
151
+ [ 107/ 219] blk.19.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
152
+ [ 108/ 219] blk.19.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
153
+ [ 109/ 219] blk.19.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
154
+ [ 110/ 219] blk.19.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
155
+ [ 111/ 219] blk.2.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
156
+ [ 112/ 219] blk.2.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
157
+ [ 113/ 219] blk.2.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
158
+ [ 114/ 219] blk.2.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
159
+ [ 115/ 219] blk.2.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
160
+ [ 116/ 219] blk.2.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
161
+ [ 117/ 219] blk.2.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
162
+ [ 118/ 219] blk.2.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
163
+ [ 119/ 219] blk.2.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
164
+ [ 120/ 219] blk.20.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
165
+ [ 121/ 219] blk.20.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
166
+ [ 122/ 219] blk.20.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
167
+ [ 123/ 219] blk.20.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
168
+ [ 124/ 219] blk.20.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
169
+ [ 125/ 219] blk.20.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
170
+ [ 126/ 219] blk.20.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
171
+ [ 127/ 219] blk.20.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
172
+ [ 128/ 219] blk.20.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
173
+ [ 129/ 219] blk.21.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
174
+ [ 130/ 219] blk.21.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
175
+ [ 131/ 219] blk.21.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
176
+ [ 132/ 219] blk.21.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
177
+ [ 133/ 219] blk.21.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
178
+ [ 134/ 219] blk.21.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
179
+ [ 135/ 219] blk.21.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
180
+ [ 136/ 219] blk.21.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
181
+ [ 137/ 219] blk.21.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
182
+ [ 138/ 219] blk.22.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
183
+ [ 139/ 219] blk.22.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
184
+ [ 140/ 219] blk.22.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
185
+ [ 141/ 219] blk.22.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
186
+ [ 142/ 219] blk.22.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
187
+ [ 143/ 219] blk.22.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
188
+ [ 144/ 219] blk.22.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
189
+ [ 145/ 219] blk.22.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
190
+ [ 146/ 219] blk.22.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
191
+ [ 147/ 219] blk.23.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
192
+ [ 148/ 219] blk.23.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
193
+ [ 149/ 219] blk.23.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
194
+ [ 150/ 219] blk.23.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
195
+ [ 151/ 219] blk.23.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
196
+ [ 152/ 219] blk.23.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
197
+ [ 153/ 219] blk.23.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
198
+ [ 154/ 219] blk.23.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
199
+ [ 155/ 219] blk.23.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
200
+ [ 156/ 219] blk.3.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
201
+ [ 157/ 219] blk.3.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
202
+ [ 158/ 219] blk.3.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
203
+ [ 159/ 219] blk.3.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
204
+ [ 160/ 219] blk.3.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
205
+ [ 161/ 219] blk.3.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
206
+ [ 162/ 219] blk.3.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
207
+ [ 163/ 219] blk.3.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
208
+ [ 164/ 219] blk.3.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
209
+ [ 165/ 219] blk.4.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
210
+ [ 166/ 219] blk.4.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
211
+ [ 167/ 219] blk.4.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
212
+ [ 168/ 219] blk.4.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
213
+ [ 169/ 219] blk.4.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
214
+ [ 170/ 219] blk.4.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
215
+ [ 171/ 219] blk.4.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
216
+ [ 172/ 219] blk.4.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
217
+ [ 173/ 219] blk.4.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
218
+ [ 174/ 219] blk.5.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
219
+ [ 175/ 219] blk.5.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
220
+ [ 176/ 219] blk.5.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
221
+ [ 177/ 219] blk.5.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
222
+ [ 178/ 219] blk.5.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
223
+ [ 179/ 219] blk.5.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
224
+ [ 180/ 219] blk.5.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
225
+ [ 181/ 219] blk.5.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
226
+ [ 182/ 219] blk.5.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
227
+ [ 183/ 219] blk.6.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
228
+ [ 184/ 219] blk.6.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
229
+ [ 185/ 219] blk.6.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
230
+ [ 186/ 219] blk.6.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
231
+ [ 187/ 219] blk.6.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
232
+ [ 188/ 219] blk.6.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
233
+ [ 189/ 219] blk.6.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
234
+ [ 190/ 219] blk.6.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
235
+ [ 191/ 219] blk.6.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
236
+ [ 192/ 219] blk.7.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
237
+ [ 193/ 219] blk.7.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
238
+ [ 194/ 219] blk.7.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
239
+ [ 195/ 219] blk.7.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
240
+ [ 196/ 219] blk.7.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
241
+ [ 197/ 219] blk.7.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
242
+ [ 198/ 219] blk.7.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
243
+ [ 199/ 219] blk.7.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
244
+ [ 200/ 219] blk.7.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
245
+ [ 201/ 219] blk.8.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
246
+ [ 202/ 219] blk.8.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
247
+ [ 203/ 219] blk.8.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
248
+ [ 204/ 219] blk.8.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
249
+ [ 205/ 219] blk.8.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
250
+ [ 206/ 219] blk.8.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
251
+ [ 207/ 219] blk.8.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
252
+ [ 208/ 219] blk.8.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
253
+ [ 209/ 219] blk.8.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
254
+ [ 210/ 219] blk.9.attn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
255
+ [ 211/ 219] blk.9.ffn_down.weight - [ 5440, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
256
+ [ 212/ 219] blk.9.ffn_gate.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
257
+ [ 213/ 219] blk.9.ffn_up.weight - [ 2048, 5440, 1, 1], type = bf16, converting to q8_0 .. size = 21.25 MiB -> 11.29 MiB
258
+ [ 214/ 219] blk.9.ffn_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
259
+ [ 215/ 219] blk.9.attn_k.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
260
+ [ 216/ 219] blk.9.attn_output.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
261
+ [ 217/ 219] blk.9.attn_q.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
262
+ [ 218/ 219] blk.9.attn_v.weight - [ 2048, 2048, 1, 1], type = bf16, converting to q8_0 .. size = 8.00 MiB -> 4.25 MiB
263
+ [ 219/ 219] output_norm.weight - [ 2048, 1, 1, 1], type = f32, size = 0.008 MB
264
+ llama_model_quantize_internal: model size = 4298.38 MB
265
+ llama_model_quantize_internal: quant size = 2752.45 MB
266
+
267
+ main: quantize time = 3190.13 ms
268
+ main: total time = 3190.13 ms
README.md CHANGED
@@ -27,7 +27,7 @@ language:
27
  - mt
28
  - nl
29
  - nn
30
- - no
31
  - oc
32
  - pl
33
  - pt
@@ -41,6 +41,53 @@ language:
41
  - uk
42
  ---
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  ![](./images/salamandra_header.png)
45
 
46
  # Salamandra Model Card
 
27
  - mt
28
  - nl
29
  - nn
30
+ - \no
31
  - oc
32
  - pl
33
  - pt
 
41
  - uk
42
  ---
43
 
44
+ # Quantization summary
45
+
46
+ | **Quantization Type** | **PPL(Q)** | **Log PPL Difference** | **File Size (G)** | **Notes** |
47
+ |-----------------------|------------|------------------------|-------------------|----------------------------------------------------------------|
48
+ | [**IQ3_M**](salamandra-2b-instruct_IQ3_M.gguf) | 16.774 | 0.086769 | 1.7 | Good size efficiency with acceptable PPL increase |
49
+ | [**Q3_K_L**](salamandra-2b-instruct_Q3_K_L.gguf) | 16.5067 | 0.070705 | 1.8 | Further size reduction with modest PPL increase |
50
+ | [**Q4_K_S**](salamandra-2b-instruct_Q4_K_S.gguf) | 15.9346 | 0.035431 | 1.9 | Good size reduction with minimal PPL impact (**recommended**) |
51
+ | [**Q5_K_M**](salamandra-2b-instruct_Q5_K_M.gguf) | 15.4746 | 0.006139 | 2.2 | Excellent balance of PPL and size (**recommended**) |
52
+ | [**Q6_K**](salamandra-2b-instruct_Q6_K.gguf) | 15.3961 | 0.001053 | 2.4 | Nearly lossless performance with reduced size |
53
+ | [**bf16**](salamandra-2b-instruct_bf16.gguf) | 15.3799 | 0.000000 | 4.2 | Baseline |
54
+
55
+ ### **Notes:**
56
+
57
+ - **Recommended Quantizations:**
58
+ - **Q4_K_S:** Although it offers good size reduction with minimal PPL impact, it is superseded by more optimal choices like Q5_K_M and Q6_K.
59
+ - **Q5_K_M:** Offers the best balance between low perplexity and reduced file size above Q4, making it ideal for most applications.
60
+ - **Q6_K:** Delivers nearly lossless performance compared to bf16 with a reduced file size (2.4G vs. 4.2G). Ideal for scenarios requiring maximum accuracy with some size savings.
61
+ - **Non-recommended Quantizations:**
62
+ - **IQ3_M:** Represents the best of the I quantization types below Q4, achieving good size efficiency while maintaining low perplexity.
63
+ - **Q3_K_L:** Provides a slightly larger file size (1.8G) with an acceptable PPL (16.5067). While it meets the log PPL difference criteria, it is not as balanced as the recommended quantizations.
64
+ - An attempt was made to get a model below **IQ3_M** size, but perplexity was unacceptable even with **IQ2_M** (more than the 0.3 selection crteria, see next section).
65
+
66
+ ---
67
+
68
+ ### **Defending the Selection:**
69
+
70
+ The selection of recommended models is designed to provide a spectrum of options that meet the following criteria:
71
+
72
+ - **Diversity in Quantization Types:**
73
+ - **I Quantization Below Q4:** **IQ3_M** is included to offer an option that uses I quantization below the **Q4** level, balancing size and performance.
74
+ - **K Quantization At and Above Q4:** **Q4_K_S**, **Q4_K_M**, **Q5_K_M**, and **Q6_K** provide K quantization options at and above the **Q4** level, giving users choices based on their specific needs.
75
+ - **Highly Compressed Quantization (Q3 and below):** **IQ3_M** and **Q3_K_L** are included as they meet the selection criteria of log PPL diff <0.3 and are not redundant with other models.
76
+
77
+ - **Selection Criteria:**
78
+ - **Log PPL diff <0.3:** All included models have a log PPL difference under 0.3, ensuring that they maintain acceptable performance even when highly quantized.
79
+ - **No Multiple Models Within 100MB of the Same File Size:** Only one model is included per similar file size range to avoid redundancy. For example, **Q3_K_L** (1.8G) is included while other models like **Q3_K_M** (1.7G) are excluded due to nearly equal file sizes and differing PPL, ensuring a sparse yet comprehensive selection.
80
+
81
+ ---
82
+
83
+ # Comparison of salamandra 2b/instruct quantization results
84
+
85
+ ![](./images/comparison_of_quantization.png)
86
+
87
+ Between the two runs, sost shared quantization types show consistent behavior across both models, reinforcing the reliability of these quantization schemes irrespective of fine-tuning. The 2b instruct quantizations showed a slight upward shift, indicating marginally higher loss for equivalent quantizations.
88
+
89
+ ---
90
+
91
  ![](./images/salamandra_header.png)
92
 
93
  # Salamandra Model Card
images/comparison_of_quantization.png ADDED
imatrix_dataset.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
imatrix_log.txt ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /Users/macdev/Downloads/build/bin/llama-imatrix \
2
+ -m ./salamandra-2b-instruct_bf16.gguf \
3
+ -f ./imatrix/oscar/imatrix-dataset.txt \
4
+ -o ./imatrix/oscar/imatrix.dat \
5
+ --threads 15 \
6
+ --ctx-size 8192 \
7
+ --rope-freq-base 10000.0 \
8
+ --top-p 0.95 \
9
+ --temp 0 \
10
+ --repeat-penalty 1.2
11
+ build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
12
+ llama_model_loader: loaded meta data with 31 key-value pairs and 219 tensors from ./salamandra-2b-instruct_bf16.gguf (version GGUF V3 (latest))
13
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
14
+ llama_model_loader: - kv 0: general.architecture str = llama
15
+ llama_model_loader: - kv 1: general.type str = model
16
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
17
+ llama_model_loader: - kv 3: general.license str = apache-2.0
18
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
19
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
20
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
21
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
22
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
23
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
24
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
25
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
26
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
27
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
28
+ llama_model_loader: - kv 14: general.file_type u32 = 32
29
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
30
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
31
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
32
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
33
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
34
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
35
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
36
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
37
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
38
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
39
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
40
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
41
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
42
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
43
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
44
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
45
+ llama_model_loader: - type f32: 49 tensors
46
+ llama_model_loader: - type bf16: 170 tensors
47
+ llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
48
+ llm_load_vocab: special tokens cache size = 104
49
+ llm_load_vocab: token to piece cache size = 1.8842 MB
50
+ llm_load_print_meta: format = GGUF V3 (latest)
51
+ llm_load_print_meta: arch = llama
52
+ llm_load_print_meta: vocab type = SPM
53
+ llm_load_print_meta: n_vocab = 256000
54
+ llm_load_print_meta: n_merges = 0
55
+ llm_load_print_meta: vocab_only = 0
56
+ llm_load_print_meta: n_ctx_train = 8192
57
+ llm_load_print_meta: n_embd = 2048
58
+ llm_load_print_meta: n_layer = 24
59
+ llm_load_print_meta: n_head = 16
60
+ llm_load_print_meta: n_head_kv = 16
61
+ llm_load_print_meta: n_rot = 128
62
+ llm_load_print_meta: n_swa = 0
63
+ llm_load_print_meta: n_embd_head_k = 128
64
+ llm_load_print_meta: n_embd_head_v = 128
65
+ llm_load_print_meta: n_gqa = 1
66
+ llm_load_print_meta: n_embd_k_gqa = 2048
67
+ llm_load_print_meta: n_embd_v_gqa = 2048
68
+ llm_load_print_meta: f_norm_eps = 0.0e+00
69
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
70
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
71
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
72
+ llm_load_print_meta: f_logit_scale = 0.0e+00
73
+ llm_load_print_meta: n_ff = 5440
74
+ llm_load_print_meta: n_expert = 0
75
+ llm_load_print_meta: n_expert_used = 0
76
+ llm_load_print_meta: causal attn = 1
77
+ llm_load_print_meta: pooling type = 0
78
+ llm_load_print_meta: rope type = 0
79
+ llm_load_print_meta: rope scaling = linear
80
+ llm_load_print_meta: freq_base_train = 10000.0
81
+ llm_load_print_meta: freq_scale_train = 1
82
+ llm_load_print_meta: n_ctx_orig_yarn = 8192
83
+ llm_load_print_meta: rope_finetuned = unknown
84
+ llm_load_print_meta: ssm_d_conv = 0
85
+ llm_load_print_meta: ssm_d_inner = 0
86
+ llm_load_print_meta: ssm_d_state = 0
87
+ llm_load_print_meta: ssm_dt_rank = 0
88
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
89
+ llm_load_print_meta: model type = ?B
90
+ llm_load_print_meta: model ftype = BF16
91
+ llm_load_print_meta: model params = 2.25 B
92
+ llm_load_print_meta: model size = 4.20 GiB (16.00 BPW)
93
+ llm_load_print_meta: general.name = n/a
94
+ llm_load_print_meta: BOS token = 1 '<s>'
95
+ llm_load_print_meta: EOS token = 2 '</s>'
96
+ llm_load_print_meta: UNK token = 0 '<unk>'
97
+ llm_load_print_meta: PAD token = 0 '<unk>'
98
+ llm_load_print_meta: LF token = 145 '<0x0A>'
99
+ llm_load_print_meta: EOT token = 5 '<|im_end|>'
100
+ llm_load_print_meta: EOG token = 2 '</s>'
101
+ llm_load_print_meta: EOG token = 5 '<|im_end|>'
102
+ llm_load_print_meta: max token length = 72
103
+ llm_load_tensors: ggml ctx size = 0.20 MiB
104
+ llm_load_tensors: offloading 24 repeating layers to GPU
105
+ llm_load_tensors: offloading non-repeating layers to GPU
106
+ llm_load_tensors: offloaded 25/25 layers to GPU
107
+ llm_load_tensors: Metal buffer size = 4298.39 MiB
108
+ llm_load_tensors: CPU buffer size = 1000.00 MiB
109
+ .......................................................
110
+ llama_new_context_with_model: n_ctx = 8192
111
+ llama_new_context_with_model: n_batch = 2048
112
+ llama_new_context_with_model: n_ubatch = 512
113
+ llama_new_context_with_model: flash_attn = 0
114
+ llama_new_context_with_model: freq_base = 10000.0
115
+ llama_new_context_with_model: freq_scale = 1
116
+ ggml_metal_init: allocating
117
+ ggml_metal_init: found device: Apple M3 Max
118
+ ggml_metal_init: picking default device: Apple M3 Max
119
+ ggml_metal_init: using embedded metal library
120
+ ggml_metal_init: GPU name: Apple M3 Max
121
+ ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
122
+ ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
123
+ ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
124
+ ggml_metal_init: simdgroup reduction support = true
125
+ ggml_metal_init: simdgroup matrix mul. support = true
126
+ ggml_metal_init: hasUnifiedMemory = true
127
+ ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
128
+ llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
129
+ llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
130
+ llama_new_context_with_model: CPU output buffer size = 0.98 MiB
131
+ llama_new_context_with_model: Metal compute buffer size = 288.00 MiB
132
+ llama_new_context_with_model: CPU compute buffer size = 500.00 MiB
133
+ llama_new_context_with_model: graph nodes = 774
134
+ llama_new_context_with_model: graph splits = 339
135
+
136
+ system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
137
+ compute_imatrix: tokenizing the input ..
138
+ compute_imatrix: tokenization took 49850.6 ms
139
+ compute_imatrix: computing over 2761 chunks with batch_size 2048
140
+ compute_imatrix: 21.89 seconds per pass - ETA 16 hours 47.15 minutes
141
+ [1]9.5013,[2]8.9819,[3]11.9011,[4]12.7153,[5]14.6644,[6]14.1413,[7]13.0545,[8]12.7865,[9]12.6856,[10]12.4469,[11]12.8781,[12]13.0330,[13]13.1550,[14]13.6471,[15]13.2151,[16]13.7717,[17]14.1626,[18]14.6421,[19]14.3569,[20]13.2714,[21]13.2034,[22]13.0614,[23]13.1096,[24]13.1536,[25]12.5522,[26]12.6202,[27]12.6385,[28]12.7061,[29]12.9160,[30]13.1051,[31]12.9912,[32]13.1490,[33]12.7698,[34]12.7757,[35]12.7208,[36]12.6196,[37]12.3513,[38]12.3746,[39]12.3823,[40]12.4091,[41]12.2961,[42]12.3500,[43]12.2301,[44]12.1506,[45]12.1335,[46]12.1013,[47]12.0307,[48]12.1224,[49]12.2420,[50]12.3560,[51]12.4814,[52]12.4640,[53]12.4211,[54]12.5355,[55]12.5829,[56]12.6120,[57]12.7223,[58]12.3899,[59]12.1386,[60]11.7298,[61]11.3254,[62]11.2823,[63]11.3045,[64]11.3086,[65]11.3211,[66]11.3642,[67]11.4704,[68]11.4825,[69]11.3871,[70]11.2217,[71]11.2850,[72]11.2832,[73]11.3711,[74]11.4344,[75]11.4874,[76]11.4223,[77]11.4740,[78]11.5646,[79]11.6103,[80]11.7126,[81]11.9028,[82]11.9351,[83]11.9594,[84]11.6998,[85]11.4874,[86]11.2732,[87]11.0851,[88]10.8654,[89]10.7074,[90]10.6072,[91]10.3987,[92]10.3514,[93]10.3655,[94]10.4841,[95]10.3688,[96]10.4153,[97]10.4250,[98]10.4736,[99]10.5193,[100]10.5617,[101]10.5772,[102]10.6002,[103]10.6418,[104]10.6793,[105]10.7498,[106]10.7743,[107]10.7494,[108]10.7842,[109]10.8352,[110]10.8535,[111]10.8482,[112]10.8848,[113]11.0211,[114]11.0262,[115]10.9986,[116]11.1057,[117]11.1117,[118]11.1211,[119]11.1300,[120]11.1559,[121]11.1875,[122]11.2243,[123]11.2249,[124]11.1641,[125]11.1522,[126]11.1587,[127]11.1700,[128]11.2116,[129]11.2402,[130]11.2678,[131]11.2717,[132]11.2918,[133]11.2277,[134]11.2404,[135]11.3084,[136]11.3322,[137]11.3027,[138]11.3480,[139]11.3910,[140]11.4133,[141]11.4060,[142]11.4164,[143]11.4306,[144]11.4635,[145]11.4672,[146]11.4341,[147]11.4019,[148]11.3954,[149]11.3654,[150]11.3584,[151]11.3320,[152]11.3190,[153]11.2661,[154]11.2901,[155]11.2733,[156]11.2677,[157]11.2611,[158]11.2778,[159]11.2710,[160]11.2894,[161]11.2950,[162]11.2734,[163]11.2402,[164]11.2658,[165]11.3087,[166]11.3204,[167]11.3629,[168]11.3621,[169]11.3818,[170]11.3484,[171]11.3459,[172]11.3319,[173]11.2990,[174]11.2954,[175]11.3011,[176]11.2960,[177]11.3134,[178]11.3298,[179]11.3740,[180]11.3572,[181]11.3844,[182]11.4280,[183]11.4656,[184]11.4963,[185]11.4792,[186]11.4122,[187]11.4182,[188]11.4950,[189]11.5431,[190]11.5263,[191]11.5014,[192]11.4863,[193]11.4442,[194]11.4203,[195]11.3719,[196]11.3324,[197]11.2960,[198]11.3533,[199]11.3776,[200]11.3970,[201]11.4396,[202]11.4640,[203]11.4838,[204]11.4769,[205]11.4690,[206]11.4783,[207]11.5302,[208]11.5653,[209]11.6174,[210]11.6450,[211]11.6782,[212]11.7139,[213]11.7444,[214]11.7722,[215]11.7991,[216]11.8313,[217]11.8288,[218]11.8666,[219]11.8655,[220]11.8907,[221]11.9175,[222]11.9329,[223]11.9511,[224]11.9765,[225]12.0103,[226]12.0359,[227]12.0544,[228]12.0365,[229]12.0627,[230]12.0321,[231]12.0120,[232]12.0348,[233]11.9917,[234]11.9483,[235]11.9279,[236]11.9105,[237]11.9119,[238]11.9349,[239]11.9166,[240]11.9246,[241]11.9522,[242]11.9868,[243]12.0101,[244]12.0340,[245]12.0672,[246]12.0926,[247]12.1097,[248]12.1327,[249]12.1417,[250]12.1622,[251]12.1877,[252]12.2145,[253]12.2328,[254]12.2492,[255]12.2722,[256]12.2965,[257]12.3044,[258]12.3083,[259]12.3126,[260]12.3065,[261]12.3261,[262]12.3085,[263]12.2956,[264]12.2643,[265]12.3003,[266]12.3250,[267]12.3499,[268]12.3265,[269]12.3189,[270]12.2652,[271]12.2213,[272]12.1434,[273]12.1443,[274]12.1442,[275]12.1636,[276]12.1748,[277]12.1989,[278]12.1593,[279]12.1306,[280]12.1396,[281]12.1438,[282]12.1501,[283]12.1425,[284]12.1141,[285]12.0958,[286]12.0766,[287]12.0574,[288]12.0532,[289]12.0503,[290]12.0324,[291]12.0256,[292]12.0512,[293]12.0412,[294]12.0763,[295]12.0863,[296]12.0674,[297]12.0613,[298]12.0444,[299]12.0086,[300]11.9903,[301]11.9801,[302]11.9229,[303]11.8989,[304]11.8846,[305]11.8619,[306]11.8133,[307]11.7972,[308]11.8002,[309]11.7919,[310]11.7858,[311]11.7875,[312]11.7637,[313]11.7869,[314]11.7709,[315]11.7560,[316]11.7998,[317]11.8178,[318]11.8305,[319]11.8572,[320]11.8616,[321]11.8844,[322]11.8902,[323]11.9214,[324]11.9302,[325]11.9520,[326]11.9893,[327]12.0288,[328]12.0494,[329]12.0903,[330]12.1070,[331]12.1445,[332]12.1942,[333]12.2204,[334]12.2560,[335]12.3614,[336]12.4010,[337]12.4221,[338]12.4652,[339]12.4888,[340]12.5400,[341]12.5532,[342]12.5872,[343]12.6067,[344]12.6270,[345]12.6445,[346]12.6591,[347]12.7206,[348]12.7413,[349]12.8833,[350]12.9409,[351]12.9721,[352]12.9868,[353]13.0017,[354]13.0076,[355]13.0192,[356]13.0349,[357]13.1299,[358]13.1529,[359]13.2356,[360]13.3636,[361]13.4324,[362]13.4609,[363]13.5077,[364]13.5348,[365]13.5758,[366]13.6566,[367]13.7284,[368]13.7417,[369]13.7719,[370]13.8147,[371]13.8814,[372]13.9159,[373]13.9173,[374]13.9554,[375]13.9693,[376]13.9922,[377]14.0296,[378]14.0492,[379]14.0522,[380]14.0603,[381]14.0861,[382]14.1127,[383]14.1310,[384]14.1417,[385]14.1564,[386]14.1736,[387]14.1969,[388]14.2045,[389]14.1967,[390]14.1772,[391]14.1956,[392]14.1798,[393]14.2065,[394]14.1998,[395]14.2094,[396]14.2531,[397]14.2660,[398]14.2788,[399]14.3046,[400]14.3244,[401]14.3455,[402]14.3579,[403]14.3676,[404]14.3413,[405]14.2996,[406]14.2519,[407]14.2430,[408]14.2536,[409]14.2597,[410]14.2609,[411]14.2687,[412]14.2645,[413]14.2616,[414]14.2558,[415]14.2378,[416]14.2233,[417]14.2105,[418]14.2053,[419]14.2290,[420]14.2257,[421]14.2265,[422]14.2366,[423]14.2403,[424]14.2466,[425]14.2692,[426]14.2846,[427]14.3007,[428]14.3143,[429]14.3445,[430]14.3567,[431]14.3859,[432]14.4059,[433]14.4204,[434]14.4457,[435]14.4613,[436]14.4651,[437]14.4880,[438]14.5049,[439]14.5236,[440]14.5401,[441]14.5517,[442]14.5680,[443]14.5682,[444]14.5842,[445]14.5679,[446]14.5724,[447]14.5921,[448]14.5986,[449]14.5956,[450]14.5947,[451]14.6032,[452]14.5799,[453]14.5979,[454]14.5842,[455]14.6443,[456]14.6570,[457]14.6684,[458]14.6827,[459]14.6670,[460]14.6162,[461]14.6853,[462]14.6723,[463]14.6706,[464]14.6677,[465]14.6966,[466]14.7157,[467]14.6939,[468]14.7017,[469]14.7015,[470]14.6964,[471]14.7140,[472]14.7065,[473]14.7036,[474]14.7050,[475]14.7125,[476]14.7240,[477]14.6868,[478]14.6947,[479]14.7111,[480]14.7209,[481]14.7017,[482]14.6421,[483]14.6385,[484]14.6412,[485]14.6594,[486]14.6646,[487]14.6691,[488]14.6694,[489]14.6671,[490]14.6625,[491]14.6668,[492]14.6665,[493]14.6635,[494]14.6524,[495]14.6526,[496]14.5771,[497]14.5880,[498]14.5844,[499]14.5905,[500]14.5958,[501]14.5835,[502]14.5874,[503]14.5867,[504]14.5829,[505]14.5815,[506]14.5805,[507]14.5555,[508]14.5598,[509]14.5931,[510]14.6050,[511]14.6260,[512]14.6153,[513]14.6264,[514]14.6091,[515]14.6115,[516]14.5885,[517]14.5186,[518]14.4598,[519]14.4657,[520]14.4574,[521]14.4715,[522]14.4794,[523]14.4694,[524]14.4552,[525]14.4493,[526]14.4338,[527]14.4575,[528]14.4625,[529]14.4957,[530]14.4718,[531]14.4740,[532]14.4672,[533]14.4456,[534]14.4323,[535]14.4260,[536]14.4082,[537]14.3975,[538]14.3947,[539]14.3962,[540]14.3851,[541]14.3900,[542]14.3858,[543]14.3790,[544]14.3547,[545]14.3367,[546]14.3035,[547]14.2733,[548]14.2498,[549]14.2229,[550]14.2240,[551]14.2112,[552]14.1870,[553]14.1610,[554]14.1242,[555]14.1375,[556]14.1410,[557]14.1220,[558]14.1181,[559]14.1090,[560]14.0989,[561]14.0923,[562]14.0908,[563]14.0929,[564]14.0899,[565]14.0927,[566]14.0972,[567]14.1003,[568]14.1032,[569]14.1003,[570]14.1050,[571]14.0970,[572]14.0907,[573]14.0985,[574]14.1019,[575]14.1064,[576]14.0480,[577]14.0376,[578]14.0284,[579]14.0119,[580]13.9976,[581]13.9988,[582]13.9881,[583]13.9816,[584]13.9683,[585]13.9373,[586]13.9361,[587]13.9308,[588]13.9027,[589]13.8894,[590]13.8352,[591]13.7821,[592]13.7312,[593]13.6981,[594]13.6624,[595]13.6605,[596]13.6564,[597]13.6590,[598]13.6378,[599]13.6308,[600]13.6179,[601]13.5890,[602]13.5721,[603]13.5452,[604]13.5301,[605]13.5181,[606]13.5029,[607]13.4880,[608]13.4834,[609]13.4747,[610]13.4565,[611]13.4410,[612]13.4245,[613]13.4079,[614]13.3848,[615]13.3968,[616]13.4224,[617]13.4209,[618]13.4154,[619]13.4172,[620]13.4132,[621]13.4126,[622]13.4240,[623]13.4352,[624]13.4212,[625]13.4095,[626]13.3994,[627]13.3798,[628]13.3846,[629]13.3581,[630]13.3683,[631]13.3753,[632]13.3432,[633]13.3323,[634]13.3309,[635]13.3247,[636]13.3179,[637]13.3141,[638]13.3146,[639]13.3171,[640]13.2895,[641]13.2562,[642]13.2282,[643]13.2212,[644]13.1749,[645]13.1307,[646]13.1321,[647]13.1057,[648]13.0901,[649]13.0771,[650]13.0594,[651]13.0486,[652]13.0559,[653]13.0391,[654]13.0233,[655]13.0115,[656]13.0164,[657]13.0165,[658]13.0249,[659]13.0203,[660]13.0147,[661]13.0041,[662]12.9908,[663]12.9941,[664]12.9920,[665]12.9908,[666]12.9808,[667]12.9807,[668]12.9784,[669]12.9800,[670]12.9804,[671]12.9692,[672]12.9695,[673]12.9740,[674]12.9615,[675]12.9589,[676]12.9651,[677]12.9701,[678]12.9667,[679]12.9642,[680]12.9606,[681]12.9649,[682]12.9462,[683]12.9351,[684]12.9419,[685]12.9388,[686]12.9355,[687]12.9337,[688]12.9249,[689]12.9072,[690]12.8898,[691]12.8838,[692]12.8760,[693]12.8669,[694]12.8476,[695]12.8483,[696]12.8454,[697]12.8369,[698]12.8363,[699]12.8346,[700]12.8305,[701]12.8266,[702]12.8268,[703]12.8261,[704]12.8206,[705]12.8062,[706]12.8054,[707]12.8061,[708]12.8164,[709]12.8169,[710]12.8359,[711]12.8462,[712]12.8602,[713]12.8678,[714]12.8769,[715]12.8873,[716]12.8685,[717]12.8706,[718]12.8818,[719]12.8809,[720]12.8827,[721]12.8886,[722]12.8861,[723]12.8825,[724]12.8749,[725]12.8632,[726]12.8636,[727]12.8691,[728]12.8780,[729]12.8776,[730]12.8943,[731]12.8495,[732]12.8521,[733]12.8426,[734]12.8870,[735]12.8858,[736]12.8884,[737]12.8995,[738]12.8956,[739]12.8932,[740]12.8987,[741]12.8983,[742]12.8974,[743]12.9046,[744]12.9115,[745]12.9043,[746]12.8907,[747]12.8969,[748]12.8952,[749]12.9005,[750]12.9074,[751]12.9160,[752]12.9280,[753]12.9352,[754]12.9423,[755]12.9473,[756]12.9517,[757]12.9581,[758]12.9627,[759]12.9681,[760]12.9729,[761]12.9819,[762]12.9837,[763]12.9897,[764]12.9942,[765]12.9982,[766]13.0043,[767]13.0082,[768]13.0110,[769]13.0145,[770]13.0205,[771]13.0279,[772]13.0343,[773]13.0354,[774]13.0409,[775]13.0453,[776]13.0509,[777]13.0541,[778]13.0514,[779]13.0613,[780]13.0621,[781]13.0587,[782]13.0549,[783]13.0478,[784]13.0445,[785]13.0438,[786]13.0442,[787]13.0721,[788]13.0844,[789]13.0921,[790]13.0942,[791]13.0977,[792]13.0913,[793]13.0782,[794]13.0868,[795]13.0944,[796]13.0898,[797]13.0943,[798]13.0927,[799]13.0834,[800]13.0818,[801]13.0807,[802]13.0876,[803]13.0929,[804]13.0920,[805]13.1008,[806]13.1059,[807]13.1053,[808]13.1044,[809]13.0929,[810]13.0975,[811]13.0972,[812]13.1076,[813]13.1042,[814]13.1030,[815]13.0971,[816]13.0942,[817]13.0905,[818]13.0900,[819]13.0869,[820]13.0785,[821]13.0823,[822]13.0879,[823]13.0864,[824]13.0970,[825]13.1036,[826]13.1189,[827]13.1281,[828]13.1258,[829]13.1520,[830]13.1777,[831]13.1836,[832]13.1794,[833]13.1791,[834]13.1839,[835]13.1860,[836]13.1825,[837]13.1892,[838]13.1958,[839]13.1931,[840]13.1930,[841]13.1898,[842]13.1970,[843]13.2069,[844]13.2392,[845]13.2541,[846]13.2531,[847]13.2528,[848]13.2532,[849]13.2560,[850]13.2598,[851]13.2666,[852]13.2670,[853]13.2749,[854]13.2795,[855]13.2821,[856]13.2820,[857]13.2886,[858]13.2890,[859]13.2772,[860]13.2703,[861]13.2732,[862]13.2723,[863]13.2839,[864]13.2862,[865]13.2836,[866]13.2843,[867]13.2868,[868]13.2862,[869]13.2800,[870]13.2854,[871]13.3065,[872]13.3407,[873]13.3738,[874]13.4093,[875]13.4055,[876]13.3957,[877]13.3923,[878]13.3944,[879]13.3975,[880]13.4036,[881]13.4048,[882]13.4036,[883]13.4037,[884]13.4378,[885]13.4567,[886]13.4511,[887]13.4532,[888]13.4485,[889]13.4466,[890]13.4451,[891]13.4375,[892]13.4383,[893]13.4309,[894]13.4271,[895]13.4269,[896]13.4311,[897]13.4311,[898]13.4335,[899]13.4376,[900]13.4511,[901]13.4717,[902]13.4735,[903]13.4708,[904]13.4737,[905]13.4719,[906]13.4713,[907]13.4783,[908]13.4728,[909]13.4751,[910]13.4911,[911]13.4865,[912]13.4908,[913]13.4903,[914]13.4940,[915]13.4943,[916]13.4932,[917]13.4953,[918]13.4867,[919]13.4874,[920]13.4882,[921]13.4713,[922]13.4633,[923]13.4570,[924]13.4523,[925]13.4430,[926]13.4380,[927]13.4394,[928]13.4393,[929]13.4392,[930]13.4362,[931]13.4401,[932]13.4435,[933]13.4405,[934]13.4454,[935]13.4406,[936]13.4481,[937]13.4576,[938]13.4623,[939]13.4598,[940]13.4612,[941]13.4655,[942]13.4715,[943]13.4743,[944]13.4806,[945]13.4765,[946]13.4802,[947]13.4859,[948]13.4907,[949]13.4936,[950]13.4906,[951]13.4924,[952]13.4914,[953]13.4928,[954]13.4875,[955]13.4905,[956]13.4939,[957]13.4960,[958]13.4904,[959]13.4911,[960]13.4912,[961]13.4896,[962]13.4963,[963]13.4953,[964]13.4939,[965]13.4900,[966]13.4903,[967]13.4897,[968]13.4862,[969]13.4852,[970]13.4885,[971]13.4823,[972]13.4848,[973]13.4826,[974]13.4742,[975]13.4663,[976]13.4597,[977]13.4537,[978]13.4581,[979]13.4714,[980]13.4792,[981]13.4862,[982]13.4853,[983]13.4894,[984]13.4955,[985]13.4987,[986]13.5001,[987]13.4984,[988]13.5065,[989]13.5131,[990]13.5121,[991]13.5252,[992]13.5363,[993]13.5464,[994]13.5556,[995]13.5637,[996]13.5794,[997]13.5925,[998]13.6083,[999]13.6140,[1000]13.6260,[1001]13.6339,[1002]13.6448,[1003]13.6503,[1004]13.6553,[1005]13.6581,[1006]13.6687,[1007]13.6777,[1008]13.6893,[1009]13.6987,[1010]13.7078,[1011]13.7191,[1012]13.7244,[1013]13.7323,[1014]13.7446,[1015]13.7592,[1016]13.7669,[1017]13.7666,[1018]13.7683,[1019]13.7765,[1020]13.7883,[1021]13.7951,[1022]13.8011,[1023]13.8082,[1024]13.8193,[1025]13.8302,[1026]13.8418,[1027]13.8512,[1028]13.8554,[1029]13.8430,[1030]13.8331,[1031]13.8185,[1032]13.8272,[1033]13.8346,[1034]13.8438,[1035]13.8550,[1036]13.8693,[1037]13.8842,[1038]13.8943,[1039]13.9064,[1040]13.9182,[1041]13.9279,[1042]13.9336,[1043]13.9410,[1044]13.9425,[1045]13.9565,[1046]13.9500,[1047]13.9601,[1048]13.9683,[1049]13.9770,[1050]13.9835,[1051]13.9983,[1052]14.0126,[1053]14.0196,[1054]14.0312,[1055]14.0340,[1056]14.0521,[1057]14.0666,[1058]14.0796,[1059]14.0968,[1060]14.1073,[1061]14.1252,[1062]14.1367,[1063]14.1474,[1064]14.1673,[1065]14.1838,[1066]14.2002,[1067]14.2019,[1068]14.2040,[1069]14.2101,[1070]14.2105,[1071]14.2294,[1072]14.2178,[1073]14.2337,[1074]14.2465,[1075]14.2468,[1076]14.2446,[1077]14.2421,[1078]14.2520,[1079]14.2620,[1080]14.2768,[1081]14.2900,[1082]14.2997,[1083]14.2994,[1084]14.3090,[1085]14.3008,[1086]14.2925,[1087]14.2898,[1088]14.2980,[1089]14.3056,[1090]14.3091,[1091]14.3268,[1092]14.3347,[1093]14.3374,[1094]14.3447,[1095]14.3562,[1096]14.3633,[1097]14.3777,[1098]14.3903,[1099]14.3975,[1100]14.4089,[1101]14.4272,[1102]14.4439,[1103]14.4421,[1104]14.4432,[1105]14.4452,[1106]14.4597,[1107]14.4557,[1108]14.4492,[1109]14.4338,[1110]14.4417,[1111]14.4620,[1112]14.4760,[1113]14.4888,[1114]14.5100,[1115]14.5154,[1116]14.5131,[1117]14.5200,[1118]14.5052,[1119]14.4964,[1120]14.4781,[1121]14.4744,[1122]14.4735,[1123]14.4705,[1124]14.4738,[1125]14.4772,[1126]14.4717,[1127]14.4739,[1128]14.4538,[1129]14.4676,[1130]14.4753,[1131]14.4745,[1132]14.4833,[1133]14.4908,[1134]14.4959,[1135]14.4971,[1136]14.5089,[1137]14.5149,[1138]14.5347,[1139]14.5421,[1140]14.5500,[1141]14.5606,[1142]14.5754,[1143]14.5816,[1144]14.5925,[1145]14.6011,[1146]14.6058,[1147]14.6134,[1148]14.6160,[1149]14.6252,[1150]14.6345,[1151]14.6487,[1152]14.6592,[1153]14.6686,[1154]14.6746,[1155]14.6839,[1156]14.6859,[1157]14.6995,[1158]14.7043,[1159]14.7118,[1160]14.7226,[1161]14.7363,[1162]14.7430,[1163]14.7507,[1164]14.7577,[1165]14.7600,[1166]14.7740,[1167]14.7798,[1168]14.7901,[1169]14.7985,[1170]14.8075,[1171]14.8179,[1172]14.8210,[1173]14.8321,[1174]14.8415,[1175]14.8525,[1176]14.8512,[1177]14.8641,[1178]14.8668,[1179]14.8707,[1180]14.8786,[1181]14.8913,[1182]14.9054,[1183]14.9108,[1184]14.9129,[1185]14.9205,[1186]14.9279,[1187]14.9204,[1188]14.9149,[1189]14.9068,[1190]14.9037,[1191]14.9040,[1192]14.9045,[1193]14.9165,[1194]14.9090,[1195]14.9096,[1196]14.9020,[1197]14.9007,[1198]14.8955,[1199]14.8913,[1200]14.8875,[1201]14.8901,[1202]14.8917,[1203]14.8814,[1204]14.8668,[1205]14.8641,[1206]14.8639,[1207]14.8535,[1208]14.8512,[1209]14.8475,[1210]14.8427,[1211]14.8402,[1212]14.8369,[1213]14.8291,[1214]14.8264,[1215]14.8139,[1216]14.8147,[1217]14.8100,[1218]14.8010,[1219]14.8020,[1220]14.8022,[1221]14.7966,[1222]14.7942,[1223]14.7967,[1224]14.7981,[1225]14.7982,[1226]14.7985,[1227]14.7937,[1228]14.7909,[1229]14.7898,[1230]14.7902,[1231]14.7864,[1232]14.7818,[1233]14.7773,[1234]14.7684,[1235]14.7620,[1236]14.7653,[1237]14.7637,[1238]14.7650,[1239]14.7669,[1240]14.7697,[1241]14.7705,[1242]14.7728,[1243]14.7749,[1244]14.7633,[1245]14.7644,[1246]14.7661,[1247]14.7668,[1248]14.7667,[1249]14.7640,[1250]14.7648,[1251]14.7594,[1252]14.7557,[1253]14.7565,[1254]14.7500,[1255]14.7423,[1256]14.7384,[1257]14.7353,[1258]14.7294,[1259]14.7254,[1260]14.7256,[1261]14.7215,[1262]14.7174,[1263]14.7176,[1264]14.7116,[1265]14.7096,[1266]14.7093,[1267]14.7059,[1268]14.7042,[1269]14.6981,[1270]14.6929,[1271]14.6913,[1272]14.6746,[1273]14.6647,[1274]14.6649,[1275]14.6611,[1276]14.6607,[1277]14.6688,[1278]14.6768,[1279]14.6813,[1280]14.6882,[1281]14.6985,[1282]14.7094,[1283]14.7163,[1284]14.7240,[1285]14.7318,[1286]14.7344,[1287]14.7422,[1288]14.7513,[1289]14.7610,[1290]14.7674,[1291]14.7753,[1292]14.7868,[1293]14.7945,[1294]14.8039,[1295]14.8086,[1296]14.8127,[1297]14.8203,[1298]14.8257,[1299]14.8271,[1300]14.8278,[1301]14.8323,[1302]14.8355,[1303]14.8382,[1304]14.8438,[1305]14.8501,[1306]14.8560,[1307]14.8655,[1308]14.8742,[1309]14.8843,[1310]14.8893,[1311]14.8927,[1312]14.8967,[1313]14.9040,[1314]14.9129,[1315]14.9193,[1316]14.9228,[1317]14.9201,[1318]14.9275,[1319]14.9355,[1320]14.9357,[1321]14.9394,[1322]14.9454,[1323]14.9536,[1324]14.9618,[1325]14.9678,[1326]14.9710,[1327]14.9745,[1328]14.9810,[1329]14.9834,[1330]14.9894,[1331]14.9928,[1332]14.9948,[1333]14.9990,[1334]15.0058,[1335]15.0062,[1336]15.0109,[1337]15.0149,[1338]15.0192,[1339]15.0194,[1340]15.0212,[1341]15.0254,[1342]15.0294,[1343]15.0338,[1344]15.0320,[1345]15.0329,[1346]15.0312,[1347]15.0349,[1348]15.0380,[1349]15.0410,[1350]15.0453,[1351]15.0481,[1352]15.0482,[1353]15.0582,[1354]15.0641,[1355]15.0732,[1356]15.0814,[1357]15.0882,[1358]15.0994,[1359]15.1075,[1360]15.1165,[1361]15.1203,[1362]15.1300,[1363]15.1245,[1364]15.1290,[1365]15.1226,[1366]15.1221,[1367]15.1194,[1368]15.1129,[1369]15.1120,[1370]15.1151,[1371]15.1134,[1372]15.1101,[1373]15.1077,[1374]15.1129,[1375]15.1132,[1376]15.1108,[1377]15.1113,[1378]15.1067,[1379]15.1098,[1380]15.1087,[1381]15.1037,[1382]15.1029,[1383]15.1055,[1384]15.1048,[1385]15.1048,[1386]15.1020,[1387]15.1021,[1388]15.0888,[1389]15.0929,[1390]15.0960,[1391]15.0945,[1392]15.0956,[1393]15.0901,[1394]15.0883,[1395]15.0888,[1396]15.0899,[1397]15.0911,[1398]15.0904,[1399]15.0841,[1400]15.0760,[1401]15.0667,[1402]15.0549,[1403]15.0549,[1404]15.0518,[1405]15.0442,[1406]15.0371,[1407]15.0287,[1408]15.0161,[1409]15.0092,[1410]15.0028,[1411]14.9902,[1412]14.9831,[1413]14.9735,[1414]14.9587,[1415]14.9551,[1416]14.9558,[1417]14.9380,[1418]14.9317,[1419]14.9314,[1420]14.9252,[1421]14.9173,[1422]14.9136,[1423]14.9090,[1424]14.9038,[1425]14.8963,[1426]14.8849,[1427]14.8830,[1428]14.8791,[1429]14.8770,[1430]14.8710,[1431]14.8663,[1432]14.8643,[1433]14.8528,[1434]14.8533,[1435]14.8553,[1436]14.8551,[1437]14.8460,[1438]14.8276,[1439]14.8186,[1440]14.8118,[1441]14.7971,[1442]14.7917,[1443]14.7816,[1444]14.7699,[1445]14.7643,[1446]14.7638,[1447]14.7422,[1448]14.7311,[1449]14.7206,[1450]14.7083,[1451]14.7088,[1452]14.7065,[1453]14.6913,[1454]14.6941,[1455]14.7001,[1456]14.6980,[1457]14.6889,[1458]14.6916,[1459]14.6900,[1460]14.6849,[1461]14.6819,[1462]14.6803,[1463]14.6776,[1464]14.6767,[1465]14.6834,[1466]14.6795,[1467]14.6647,[1468]14.6661,[1469]14.6684,[1470]14.6606,[1471]14.6528,[1472]14.6330,[1473]14.6114,[1474]14.6080,[1475]14.6098,[1476]14.6085,[1477]14.6060,[1478]14.6036,[1479]14.6059,[1480]14.6078,[1481]14.6127,[1482]14.6045,[1483]14.6109,[1484]14.6097,[1485]14.6124,[1486]14.6136,[1487]14.6139,[1488]14.6141,[1489]14.6153,[1490]14.6120,[1491]14.6181,[1492]14.6224,[1493]14.6203,[1494]14.6115,[1495]14.6167,[1496]14.6179,[1497]14.6136,[1498]14.6175,[1499]14.6264,[1500]14.6325,[1501]14.6414,[1502]14.6491,[1503]14.6554,[1504]14.6615,[1505]14.6637,[1506]14.6626,[1507]14.6632,[1508]14.6614,[1509]14.6602,[1510]14.6608,[1511]14.6640,[1512]14.6637,[1513]14.6713,[1514]14.6618,[1515]14.6529,[1516]14.6400,[1517]14.6335,[1518]14.6367,[1519]14.6372,[1520]14.6333,[1521]14.6278,[1522]14.6265,[1523]14.6197,[1524]14.6077,[1525]14.6227,[1526]14.6077,[1527]14.5969,[1528]14.5763,[1529]14.5778,[1530]14.5762,[1531]14.5836,[1532]14.5858,[1533]14.5897,[1534]14.5929,[1535]14.5931,[1536]14.5927,[1537]14.5948,[1538]14.5981,[1539]14.6064,[1540]14.6121,[1541]14.6117,[1542]14.5978,[1543]14.5958,[1544]14.5960,[1545]14.6005,[1546]14.6081,[1547]14.6100,[1548]14.6070,[1549]14.6065,[1550]14.6014,[1551]14.6029,[1552]14.6000,[1553]14.5985,[1554]14.5984,[1555]14.5993,[1556]14.5933,[1557]14.5965,[1558]14.5954,[1559]14.5937,[1560]14.5931,[1561]14.5939,[1562]14.5930,[1563]14.6005,[1564]14.5999,[1565]14.6029,[1566]14.6031,[1567]14.6048,[1568]14.6070,[1569]14.6140,[1570]14.6135,[1571]14.6175,[1572]14.6192,[1573]14.6103,[1574]14.6111,[1575]14.6125,[1576]14.6167,[1577]14.6242,[1578]14.6229,[1579]14.6081,[1580]14.6104,[1581]14.6060,[1582]14.6043,[1583]14.6111,[1584]14.6063,[1585]14.6144,[1586]14.6211,[1587]14.6231,[1588]14.6189,[1589]14.6282,[1590]14.6283,[1591]14.6209,[1592]14.6242,[1593]14.6251,[1594]14.6261,[1595]14.6261,[1596]14.6329,[1597]14.6324,[1598]14.6351,[1599]14.6363,[1600]14.6394,[1601]14.6465,[1602]14.6465,[1603]14.6429,[1604]14.6428,[1605]14.6415,[1606]14.6417,[1607]14.6427,[1608]14.6412,[1609]14.6397,[1610]14.6358,[1611]14.6278,[1612]14.6255,[1613]14.6242,[1614]14.6186,[1615]14.6167,[1616]14.6172,[1617]14.6181,[1618]14.6188,[1619]14.6137,[1620]14.6167,[1621]14.6129,[1622]14.6127,[1623]14.6168,[1624]14.6193,[1625]14.6249,[1626]14.6315,[1627]14.6301,[1628]14.6318,[1629]14.6373,[1630]14.6402,[1631]14.6438,[1632]14.6496,[1633]14.6526,[1634]14.6544,[1635]14.6528,[1636]14.6579,[1637]14.6608,[1638]14.6656,[1639]14.6693,[1640]14.6737,[1641]14.6855,[1642]14.6920,[1643]14.7044,[1644]14.7192,[1645]14.7328,[1646]14.7450,[1647]14.7491,[1648]14.7531,[1649]14.7609,[1650]14.7619,[1651]14.7670,[1652]14.7691,[1653]14.7713,[1654]14.7748,[1655]14.7779,[1656]14.7779,[1657]14.7820,[1658]14.7816,[1659]14.7858,[1660]14.7886,[1661]14.7917,[1662]14.7932,[1663]14.7967,[1664]14.7999,[1665]14.7977,[1666]14.7950,[1667]14.7962,[1668]14.7979,[1669]14.8011,[1670]14.8041,[1671]14.8136,[1672]14.8197,[1673]14.8261,[1674]14.8290,[1675]14.8289,[1676]14.8354,[1677]14.8395,[1678]14.8424,[1679]14.8405,[1680]14.8421,[1681]14.8445,[1682]14.8480,[1683]14.8506,[1684]14.8537,[1685]14.8566,[1686]14.8476,[1687]14.8462,[1688]14.8458,[1689]14.8473,[1690]14.8527,[1691]14.8524,[1692]14.8572,[1693]14.8624,[1694]14.8612,[1695]14.8560,[1696]14.8386,[1697]14.8441,[1698]14.8510,[1699]14.8521,[1700]14.8544,[1701]14.8546,[1702]14.8446,[1703]14.8474,[1704]14.8470,[1705]14.8478,[1706]14.8420,[1707]14.8468,[1708]14.8589,[1709]14.8631,[1710]14.8679,[1711]14.8693,[1712]14.8741,[1713]14.8767,[1714]14.8848,[1715]14.8861,[1716]14.8916,[1717]14.8944,[1718]14.9039,[1719]14.9082,[1720]14.9099,[1721]14.9103,[1722]14.9116,[1723]14.9096,[1724]14.9128,[1725]14.9148,[1726]14.9195,[1727]14.9209,[1728]14.9239,[1729]14.9361,[1730]14.9356,[1731]14.9445,[1732]14.9499,[1733]14.9520,[1734]14.9537,[1735]14.9565,[1736]14.9613,[1737]14.9658,[1738]14.9680,[1739]14.9721,[1740]14.9769,[1741]14.9816,[1742]14.9827,[1743]14.9842,[1744]14.9866,[1745]14.9913,[1746]14.9934,[1747]14.9967,[1748]14.9974,[1749]14.9966,[1750]14.9981,[1751]15.0010,[1752]15.0045,[1753]15.0040,[1754]15.0089,[1755]15.0095,[1756]15.0086,[1757]15.0126,[1758]15.0175,[1759]15.0223,[1760]15.0273,[1761]15.0193,[1762]15.0153,[1763]15.0170,[1764]15.0215,[1765]15.0254,[1766]15.0293,[1767]15.0297,[1768]15.0351,[1769]15.0379,[1770]15.0396,[1771]15.0423,[1772]15.0468,[1773]15.0491,[1774]15.0530,[1775]15.0597,[1776]15.0603,[1777]15.0619,[1778]15.0611,[1779]15.0621,[1780]15.0650,[1781]15.0682,[1782]15.0712,[1783]15.0759,[1784]15.0784,[1785]15.0701,[1786]15.0697,[1787]15.0734,[1788]15.0727,[1789]15.0752,[1790]15.0789,[1791]15.0781,[1792]15.0817,[1793]15.0836,[1794]15.0868,[1795]15.0742,[1796]15.0782,[1797]15.0811,[1798]15.0824,[1799]15.0844,[1800]15.0860,[1801]15.0913,[1802]15.0826,[1803]15.0818,[1804]15.0797,[1805]15.0775,[1806]15.0686,[1807]15.0658,[1808]15.0633,[1809]15.0636,[1810]15.0686,[1811]15.0713,[1812]15.0693,[1813]15.0666,[1814]15.0675,[1815]15.0704,[1816]15.0746,[1817]15.0768,[1818]15.0744,[1819]15.0748,[1820]15.0779,[1821]15.0677,[1822]15.0561,[1823]15.0469,[1824]15.0495,[1825]15.0526,[1826]15.0576,[1827]15.0589,[1828]15.0614,[1829]15.0626,[1830]15.0632,[1831]15.0648,[1832]15.0656,[1833]15.0627,[1834]15.0584,[1835]15.0522,[1836]15.0541,[1837]15.0601,[1838]15.0625,[1839]15.0630,[1840]15.0641,[1841]15.0606,[1842]15.0592,[1843]15.0615,[1844]15.0592,[1845]15.0611,[1846]15.0624,[1847]15.0621,[1848]15.0622,[1849]15.0631,[1850]15.0670,[1851]15.0496,[1852]15.0507,[1853]15.0540,[1854]15.0554,[1855]15.0461,[1856]15.0457,[1857]15.0465,[1858]15.0504,[1859]15.0532,[1860]15.0507,[1861]15.0446,[1862]15.0410,[1863]15.0422,[1864]15.0439,[1865]15.0433,[1866]15.0459,[1867]15.0474,[1868]15.0432,[1869]15.0388,[1870]15.0395,[1871]15.0322,[1872]15.0459,[1873]15.0434,[1874]15.0468,[1875]15.0495,[1876]15.0515,[1877]15.0542,[1878]15.0574,[1879]15.0591,[1880]15.0587,[1881]15.0580,[1882]15.0569,[1883]15.0572,[1884]15.0552,[1885]15.0518,[1886]15.0480,[1887]15.0494,[1888]15.0577,[1889]15.0623,[1890]15.0628,[1891]15.0676,[1892]15.0759,[1893]15.0823,[1894]15.0901,[1895]15.0950,[1896]15.1013,[1897]15.1079,[1898]15.1127,[1899]15.1197,[1900]15.1276,[1901]15.1349,[1902]15.1379,[1903]15.1341,[1904]15.1401,[1905]15.1363,[1906]15.1309,[1907]15.1302,[1908]15.1392,[1909]15.1394,[1910]15.1426,[1911]15.1496,[1912]15.1559,[1913]15.1678,[1914]15.1674,[1915]15.1686,[1916]15.1704,[1917]15.1710,[1918]15.1733,[1919]15.1766,[1920]15.1814,[1921]15.1785,[1922]15.1764,[1923]15.1806,[1924]15.1784,[1925]15.1811,[1926]15.1877,[1927]15.1921,[1928]15.1927,[1929]15.1963,[1930]15.1966,[1931]15.1966,[1932]15.1985,[1933]15.2019,[1934]15.2064,[1935]15.2113,[1936]15.2166,[1937]15.2233,[1938]15.2367,[1939]15.2355,[1940]15.2394,[1941]15.2435,[1942]15.2495,[1943]15.2532,[1944]15.2525,[1945]15.2585,[1946]15.2626,[1947]15.2662,[1948]15.2711,[1949]15.2755,[1950]15.2839,[1951]15.2864,[1952]15.2912,[1953]15.2885,[1954]15.2916,[1955]15.2983,[1956]15.3079,[1957]15.3153,[1958]15.3265,[1959]15.3267,[1960]15.3370,[1961]15.3448,[1962]15.3614,[1963]15.3705,[1964]15.3797,[1965]15.3877,[1966]15.3955,[1967]15.3987,[1968]15.4059,[1969]15.4160,[1970]15.4321,[1971]15.4441,[1972]15.4463,[1973]15.4440,[1974]15.4419,[1975]15.4385,[1976]15.4379,[1977]15.4294,[1978]15.4144,[1979]15.4054,[1980]15.3961,[1981]15.3828,[1982]15.3751,[1983]15.3659,[1984]15.3622,[1985]15.3631,[1986]15.3608,[1987]15.3532,[1988]15.3443,[1989]15.3323,[1990]15.3294,[1991]15.3220,[1992]15.3198,[1993]15.3188,[1994]15.3176,[1995]15.3190,[1996]15.3197,[1997]15.3166,[1998]15.3165,[1999]15.3177,[2000]15.3183,[2001]15.3142,[2002]15.3126,[2003]15.3126,[2004]15.3114,[2005]15.3142,[2006]15.3119,[2007]15.3100,[2008]15.3068,[2009]15.3014,[2010]15.2996,[2011]15.2976,[2012]15.2977,[2013]15.2960,[2014]15.3005,[2015]15.2983,[2016]15.2915,[2017]15.2832,[2018]15.2700,[2019]15.2698,[2020]15.2680,[2021]15.2667,[2022]15.2711,[2023]15.2682,[2024]15.2663,[2025]15.2558,[2026]15.2557,[2027]15.2549,[2028]15.2559,[2029]15.2556,[2030]15.2572,[2031]15.2588,[2032]15.2593,[2033]15.2585,[2034]15.2611,[2035]15.2603,[2036]15.2600,[2037]15.2607,[2038]15.2627,[2039]15.2634,[2040]15.2611,[2041]15.2624,[2042]15.2647,[2043]15.2635,[2044]15.2651,[2045]15.2639,[2046]15.2615,[2047]15.2653,[2048]15.2609,[2049]15.2593,[2050]15.2570,[2051]15.2442,[2052]15.2376,[2053]15.2360,[2054]15.2374,[2055]15.2435,[2056]15.2417,[2057]15.2365,[2058]15.2396,[2059]15.2369,[2060]15.2363,[2061]15.2356,[2062]15.2358,[2063]15.2258,[2064]15.2181,[2065]15.2173,[2066]15.2110,[2067]15.2044,[2068]15.2032,[2069]15.2025,[2070]15.2030,[2071]15.2016,[2072]15.2000,[2073]15.1984,[2074]15.1954,[2075]15.1898,[2076]15.1932,[2077]15.1860,[2078]15.1868,[2079]15.1860,[2080]15.1851,[2081]15.1853,[2082]15.1871,[2083]15.1864,[2084]15.1868,[2085]15.1867,[2086]15.1818,[2087]15.1834,[2088]15.1826,[2089]15.1755,[2090]15.1750,[2091]15.1751,[2092]15.1725,[2093]15.1751,[2094]15.1739,[2095]15.1727,[2096]15.1737,[2097]15.1753,[2098]15.1758,[2099]15.1764,[2100]15.1684,[2101]15.1655,[2102]15.1656,[2103]15.1731,[2104]15.1723,[2105]15.1708,[2106]15.1634,[2107]15.1639,[2108]15.1592,[2109]15.1564,[2110]15.1547,[2111]15.1535,[2112]15.1567,[2113]15.1553,[2114]15.1548,[2115]15.1574,[2116]15.1566,[2117]15.1536,[2118]15.1501,[2119]15.1488,[2120]15.1475,[2121]15.1483,[2122]15.1490,[2123]15.1483,[2124]15.1453,[2125]15.1410,[2126]15.1421,[2127]15.1427,[2128]15.1377,[2129]15.1385,[2130]15.1380,[2131]15.1396,[2132]15.1409,[2133]15.1428,[2134]15.1432,[2135]15.1453,[2136]15.1450,[2137]15.1462,[2138]15.1453,[2139]15.1409,[2140]15.1416,[2141]15.1437,[2142]15.1442,[2143]15.1400,[2144]15.1390,[2145]15.1349,[2146]15.1194,[2147]15.1181,[2148]15.1172,[2149]15.1174,[2150]15.1173,[2151]15.1063,[2152]15.0954,[2153]15.0909,[2154]15.0807,[2155]15.0721,[2156]15.0723,[2157]15.0689,[2158]15.0692,[2159]15.0715,[2160]15.0723,[2161]15.0701,[2162]15.0670,[2163]15.0673,[2164]15.0706,[2165]15.0693,[2166]15.0717,[2167]15.0720,[2168]15.0722,[2169]15.0847,[2170]15.1006,[2171]15.1036,[2172]15.1057,[2173]15.1102,[2174]15.1099,[2175]15.1088,[2176]15.1094,[2177]15.1069,[2178]15.1083,[2179]15.1108,[2180]15.1126,[2181]15.1135,[2182]15.1129,[2183]15.1130,[2184]15.1132,[2185]15.1157,[2186]15.1165,[2187]15.1191,[2188]15.1195,[2189]15.1233,[2190]15.1236,[2191]15.1260,[2192]15.1269,[2193]15.1257,[2194]15.1256,[2195]15.1255,[2196]15.1236,[2197]15.1250,[2198]15.1288,[2199]15.1290,[2200]15.1292,[2201]15.1241,[2202]15.1179,[2203]15.1200,[2204]15.1204,[2205]15.1189,[2206]15.1173,[2207]15.1131,[2208]15.1127,[2209]15.1100,[2210]15.1117,[2211]15.1097,[2212]15.1053,[2213]15.1038,[2214]15.1032,[2215]15.1031,[2216]15.1010,[2217]15.0963,[2218]15.0935,[2219]15.0934,[2220]15.0932,[2221]15.0901,[2222]15.0851,[2223]15.0836,[2224]15.0838,[2225]15.0805,[2226]15.0812,[2227]15.0838,[2228]15.0773,[2229]15.0733,[2230]15.0772,[2231]15.0743,[2232]15.0731,[2233]15.0712,[2234]15.0726,[2235]15.0765,[2236]15.0786,[2237]15.0752,[2238]15.0725,[2239]15.0786,[2240]15.0791,[2241]15.0780,[2242]15.0830,[2243]15.0847,[2244]15.0862,[2245]15.0875,[2246]15.0928,[2247]15.1009,[2248]15.0962,[2249]15.0914,[2250]15.0915,[2251]15.0911,[2252]15.0936,[2253]15.0943,[2254]15.0866,[2255]15.0848,[2256]15.0814,[2257]15.0783,[2258]15.0761,[2259]15.0619,[2260]15.0556,[2261]15.0545,[2262]15.0534,[2263]15.0529,[2264]15.0534,[2265]15.0538,[2266]15.0533,[2267]15.0531,[2268]15.0507,[2269]15.0489,[2270]15.0466,[2271]15.0436,[2272]15.0394,[2273]15.0375,[2274]15.0363,[2275]15.0366,[2276]15.0365,[2277]15.0367,[2278]15.0343,[2279]15.0336,[2280]15.0355,[2281]15.0364,[2282]15.0368,[2283]15.0356,[2284]15.0350,[2285]15.0231,[2286]15.0223,[2287]15.0208,[2288]15.0208,[2289]15.0187,[2290]15.0122,[2291]15.0067,[2292]15.0020,[2293]14.9978,[2294]14.9952,[2295]14.9918,[2296]14.9789,[2297]14.9760,[2298]14.9726,[2299]14.9668,[2300]14.9662,[2301]14.9658,[2302]14.9657,[2303]14.9656,[2304]14.9617,[2305]14.9600,[2306]14.9606,[2307]14.9587,[2308]14.9545,[2309]14.9540,[2310]14.9518,[2311]14.9505,[2312]14.9500,[2313]14.9467,[2314]14.9439,[2315]14.9414,[2316]14.9426,[2317]14.9401,[2318]14.9387,[2319]14.9407,[2320]14.9437,[2321]14.9379,[2322]14.9368,[2323]14.9388,[2324]14.9378,[2325]14.9332,[2326]14.9313,[2327]14.9252,[2328]14.9195,[2329]14.9143,[2330]14.9091,[2331]14.9072,[2332]14.9034,[2333]14.9010,[2334]14.9000,[2335]14.8970,[2336]14.8974,[2337]14.8974,[2338]14.8938,[2339]14.8908,[2340]14.8884,[2341]14.8894,[2342]14.8918,[2343]14.8941,[2344]14.8941,[2345]14.8950,[2346]14.8932,[2347]14.8978,[2348]14.8959,[2349]14.8972,[2350]14.8930,[2351]14.8769,[2352]14.8794,[2353]14.8787,[2354]14.8804,[2355]14.8760,[2356]14.8776,[2357]14.8744,[2358]14.8769,[2359]14.8789,[2360]14.8809,[2361]14.8807,[2362]14.8806,[2363]14.8814,[2364]14.8834,[2365]14.8770,[2366]14.8770,[2367]14.8776,[2368]14.8750,[2369]14.8715,[2370]14.8684,[2371]14.8691,[2372]14.8707,[2373]14.8607,[2374]14.8484,[2375]14.8348,[2376]14.8261,[2377]14.8161,[2378]14.8033,[2379]14.7938,[2380]14.7825,[2381]14.7723,[2382]14.7621,[2383]14.7512,[2384]14.7404,[2385]14.7323,[2386]14.7267,[2387]14.7154,[2388]14.7045,[2389]14.6951,[2390]14.6885,[2391]14.6807,[2392]14.6771,[2393]14.6696,[2394]14.6607,[2395]14.6637,[2396]14.6658,[2397]14.6697,[2398]14.6721,[2399]14.6721,[2400]14.6738,[2401]14.6753,[2402]14.6763,[2403]14.6764,[2404]14.6793,[2405]14.6793,[2406]14.6757,[2407]14.6738,[2408]14.6757,[2409]14.6770,[2410]14.6793,[2411]14.6808,[2412]14.6873,[2413]14.6940,[2414]14.6950,[2415]14.6958,[2416]14.6982,[2417]14.6974,[2418]14.6996,[2419]14.6977,[2420]14.6999,[2421]14.6996,[2422]14.6972,[2423]14.6956,[2424]14.6958,[2425]14.6966,[2426]14.6885,[2427]14.6813,[2428]14.6802,[2429]14.6770,[2430]14.6712,[2431]14.6727,[2432]14.6720,[2433]14.6715,[2434]14.6716,[2435]14.6715,[2436]14.6722,[2437]14.6678,[2438]14.6661,[2439]14.6657,[2440]14.6667,[2441]14.6655,[2442]14.6674,[2443]14.6705,[2444]14.6727,[2445]14.6728,[2446]14.6741,[2447]14.6747,[2448]14.6782,[2449]14.6805,[2450]14.6847,[2451]14.6883,[2452]14.6921,[2453]14.6951,[2454]14.6970,[2455]14.7012,[2456]14.7023,[2457]14.7020,[2458]14.7068,[2459]14.7093,[2460]14.7122,[2461]14.7165,[2462]14.7120,[2463]14.7157,[2464]14.7185,[2465]14.7199,[2466]14.7221,[2467]14.7223,[2468]14.7207,[2469]14.7156,[2470]14.7092,[2471]14.7136,[2472]14.7176,[2473]14.7215,[2474]14.7250,[2475]14.7274,[2476]14.7292,[2477]14.7317,[2478]14.7348,[2479]14.7393,[2480]14.7440,[2481]14.7452,[2482]14.7477,[2483]14.7452,[2484]14.7478,[2485]14.7508,[2486]14.7537,[2487]14.7549,[2488]14.7570,[2489]14.7594,[2490]14.7601,[2491]14.7617,[2492]14.7654,[2493]14.7712,[2494]14.7763,[2495]14.7750,[2496]14.7778,[2497]14.7783,[2498]14.7779,[2499]14.7785,[2500]14.7801,[2501]14.7776,[2502]14.7750,[2503]14.7750,[2504]14.7861,[2505]14.7963,[2506]14.8072,[2507]14.8187,[2508]14.8237,[2509]14.8339,[2510]14.8453,[2511]14.8569,[2512]14.8643,[2513]14.8758,[2514]14.8786,[2515]14.8874,[2516]14.8832,[2517]14.8830,[2518]14.8827,[2519]14.8821,[2520]14.8798,[2521]14.8799,[2522]14.8795,[2523]14.8804,[2524]14.8816,[2525]14.8803,[2526]14.8813,[2527]14.8824,[2528]14.8851,[2529]14.8845,[2530]14.8841,[2531]14.8837,[2532]14.8839,[2533]14.8834,[2534]14.8831,[2535]14.8820,[2536]14.8821,[2537]14.8835,[2538]14.8846,[2539]14.8829,[2540]14.8830,[2541]14.8839,[2542]14.8852,[2543]14.8869,[2544]14.8866,[2545]14.8865,[2546]14.8854,[2547]14.8847,[2548]14.8873,[2549]14.8892,[2550]14.8893,[2551]14.8825,[2552]14.8824,[2553]14.8831,[2554]14.8839,[2555]14.8846,[2556]14.8847,[2557]14.8821,[2558]14.8810,[2559]14.8770,[2560]14.8781,[2561]14.8789,[2562]14.8796,[2563]14.8794,[2564]14.8891,[2565]14.8901,[2566]14.8900,[2567]14.8901,[2568]14.8835,[2569]14.8861,[2570]14.8883,[2571]14.8914,[2572]14.8903,[2573]14.8877,[2574]14.8908,[2575]14.9001,[2576]14.9042,[2577]14.9152,[2578]14.9158,[2579]14.9210,[2580]14.9244,[2581]14.9258,[2582]14.9270,[2583]14.9268,[2584]14.9302,[2585]14.9333,[2586]14.9298,[2587]14.9338,[2588]14.9364,[2589]14.9356,[2590]14.9381,[2591]14.9397,[2592]14.9421,[2593]14.9434,[2594]14.9449,[2595]14.9504,[2596]14.9541,[2597]14.9557,[2598]14.9521,[2599]14.9568,[2600]14.9604,[2601]14.9625,[2602]14.9646,[2603]14.9664,[2604]14.9735,[2605]14.9776,[2606]14.9799,[2607]14.9791,[2608]14.9819,[2609]14.9850,[2610]14.9864,[2611]14.9974,[2612]15.0031,[2613]15.0054,[2614]15.0061,[2615]14.9978,[2616]14.9966,[2617]14.9965,[2618]15.0037,[2619]15.0100,[2620]15.0082,[2621]15.0055,[2622]15.0031,[2623]15.0013,[2624]14.9992,[2625]14.9968,[2626]14.9972,[2627]15.0013,[2628]15.0081,[2629]15.0159,[2630]15.0130,[2631]15.0116,[2632]15.0104,[2633]15.0057,[2634]15.0037,[2635]15.0028,[2636]15.0027,[2637]15.0010,[2638]14.9920,[2639]14.9904,[2640]14.9913,[2641]14.9911,[2642]14.9869,[2643]14.9881,[2644]14.9901,[2645]14.9921,[2646]14.9935,[2647]14.9933,[2648]14.9891,[2649]14.9844,[2650]14.9870,[2651]14.9863,[2652]14.9863,[2653]14.9827,[2654]14.9733,[2655]14.9674,[2656]14.9644,[2657]14.9651,[2658]14.9628,[2659]14.9633,[2660]14.9614,[2661]14.9587,[2662]14.9543,[2663]14.9573,[2664]14.9622,[2665]14.9608,[2666]14.9629,[2667]14.9648,[2668]14.9659,[2669]14.9707,[2670]14.9732,[2671]14.9707,[2672]14.9652,[2673]14.9625,[2674]14.9593,[2675]14.9549,[2676]14.9471,[2677]14.9507,[2678]14.9476,[2679]14.9507,[2680]14.9504,[2681]14.9502,[2682]14.9472,[2683]14.9467,[2684]14.9457,[2685]14.9482,[2686]14.9476,[2687]14.9467,[2688]14.9457,[2689]14.9417,[2690]14.9398,[2691]14.9394,[2692]14.9382,[2693]14.9364,[2694]14.9347,[2695]14.9347,[2696]14.9345,[2697]14.9301,[2698]14.9273,[2699]14.9260,[2700]14.9214,[2701]14.9213,[2702]14.9197,[2703]14.9199,[2704]14.9176,[2705]14.9167,[2706]14.9157,[2707]14.9143,[2708]14.9153,[2709]14.9105,[2710]14.9095,[2711]14.9124,[2712]14.9126,[2713]14.9091,[2714]14.9067,[2715]14.9027,[2716]14.9011,[2717]14.9005,[2718]14.9003,[2719]14.8954,[2720]14.8935,[2721]14.8887,[2722]14.8867,[2723]14.8846,[2724]14.8850,[2725]14.8846,[2726]14.8849,[2727]14.8859,[2728]14.8875,[2729]14.8891,[2730]14.8906,[2731]14.8917,[2732]14.8911,[2733]14.8849,[2734]14.8841,[2735]14.8833,[2736]14.8812,[2737]14.8783,[2738]14.8775,[2739]14.8754,[2740]14.8738,[2741]14.8721,[2742]14.8700,[2743]14.8680,[2744]14.8662,[2745]14.8650,[2746]14.8637,[2747]14.8616,[2748]14.8597,[2749]14.8598,[2750]14.8594,[2751]14.8587,[2752]14.8575,[2753]14.8590,[2754]14.8591,[2755]14.8591,[2756]14.8604,[2757]14.8616,[2758]14.8630,[2759]14.8596,[2760]14.8599,[2761]14.8620,
142
+ Final estimate: PPL = 14.8620 +/- 0.01330
143
+
144
+ llama_perf_context_print: load time = 55493.15 ms
145
+ llama_perf_context_print: prompt eval time = 59547279.58 ms / 22618112 tokens ( 2.63 ms per token, 379.83 tokens per second)
146
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
147
+ llama_perf_context_print: total time = 64365038.77 ms / 22618113 tokens
148
+ ggml_metal_free: deallocating
on_perplexity.md ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A concise summary with specific recommendations for selecting PPL sample size in multilingual datasets:
2
+
3
+ When measuring perplexity (PPL) in multilingual models, the number of samples needed per language increases with the diversity and size of the dataset. However, there are diminishing returns as the number of languages grows, particularly when languages share structural or linguistic similarities.
4
+
5
+ Benchmarks like _XTREME_ and _WMT_ suggest that **500-1,000 samples per language** is often sufficient for accurate evaluation. This allows you to capture a representative sample of each language's linguistic features without overwhelming computational resources. As the number of languages increases, it’s common to reduce the sample size for each language proportionally, especially if certain languages dominate the dataset or have significant overlap in characteristics.
6
+
7
+ In the XTREME benchmark, English uses **10,000 samples**, while each of the **40+ other languages** uses **1,000-2,000 samples** to maintain feasibility across multilingual tasks. Similarly, WMT reduces sample sizes for lower-resource languages, scaling from **several thousand for high-resource languages** to **a few hundred or 1,000 per language** when handling many languages. Both examples demonstrate a practical approach to balancing resource usage and linguistic coverage ([XTREME](https://arxiv.org/abs/2003.11080), [WMT Papers](https://www.statmt.org/wmt20/)).
8
+
9
+ ---
10
+
11
+ ### Recommendations:
12
+
13
+ 1. **Start with 500-1,000 samples per language**: This size is commonly used in NLP tasks to balance performance and resource efficiency, ensuring that linguistic coverage is broad enough.
14
+
15
+ 2. **Scale based on number of languages**: For datasets with many languages (e.g., 40+), consider reducing the number of samples per language to **50-100**, as is done in benchmarks like XTREME.
16
+
17
+
18
+ ---
19
+
20
+ ### **References**
21
+
22
+ 1. **XTREME: A Massively Multilingual Benchmark for Evaluating Cross-lingual Generalization**
23
+ - Authors: Hu et al.
24
+ - Year: 2020
25
+ - Source: [arXiv](https://arxiv.org/abs/2003.11080)
26
+ - Summary: XTREME evaluates models across many languages and scales down sample sizes to maintain feasibility while preserving coverage across languages.
27
+
28
+ 2. **WMT: Workshop on Machine Translation Shared Tasks**
29
+ - Source: [WMT Papers](https://www.statmt.org/wmt20/)
30
+ - Summary: WMT tasks often reduce sample sizes per language as the number of target languages grows, demonstrating that smaller samples can still yield accurate model evaluations.
on_quantization.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A concise summary with specific recommendations for quantizing your large language models (LLMs):
2
+
3
+ When working with multilingual _quantization_ for _large language models_ (LLMs), the _number of samples needed_ for effective quantization **increases with the number of target languages**. With more linguistic features, the model must learn and adapt across a broader spectrum during the quantization process.
4
+
5
+ Recent work, such as the _Lens_ framework and studies on quantized multilingual LLMs, emphasizes that larger datasets are critical for multilingual models to ensure performance remains consistent across all languages. These models typically perform best when they have **sufficient samples for each language**. This allows them to maintain their accuracy in quantization. In the case of multilingual evaluation tasks, several sources highlight that adding more languages requires **proportional increases** in calibration samples to smooth activations and avoid performance drops. These studies often mention the use of **thousands of samples per language** to preserve accuracy during multilingual post-training quantization ([Lens, 2024](https://ar5iv.org/html/2410.04407), [Quantization for Multilingual LLMs, 2024](https://ar5iv.org/abs/2407.03211)).
6
+
7
+ ## Instruction Fine-tuning and Evaluation
8
+
9
+ Instruction fine-tuning has become crucial to enhance language models' ability to follow specific instructions and perform diverse tasks ([Chung et al., 2022](https://ar5iv.org/abs/2210.11416)) and especially chat interations. It typically involves training on datasets consisting of instruction-output pairs, which can be manually curated, transformed from existing datasets, or generated using other models.
10
+
11
+ The evaluation of instruction-tuned models often requires specialized methods ([Honovich et al., 2023](https://ar5iv.org/abs/2308.10792)). These methods focus on assessing the model's ability to follow instructions and generate appropriate responses, rather than relying solely on general metrics like perplexity.
12
+
13
+ Contrary to some assumptions, there is no established requirement or practice of including instruction data in the input matrix (imatrix) used for perplexity testing or other general evaluations ([Wei et al., 2022](https://ar5iv.org/abs/2206.07682)). The evaluation of instruction-tuned models typically involves task-specific metrics and methods that directly measure instruction-following capabilities.
14
+
15
+ ----
16
+
17
+ With Salamandra models, the following recommendations can be made:
18
+
19
+ ## **1. Use Calibration Data**
20
+ For **post-training quantization (PTQ)**, gather **several thousand calibration samples** per task. This helps smooth activations and adjust weights to avoid performance loss ([SmoothQuant](https://ar5iv.org/pdf/2211.10438v1), [Comprehensive Evaluation](https://aclanthology.org/2024-comprehensive)).
21
+
22
+ ## **2. Dataset Size Recommendations**
23
+ - **For 2B models (Base or Instruct)**: Start with **1,000 to 5,000 samples** per language for quantization.
24
+ - **For 7B models (Base or Instruct)**: Start with **5,000 to 20,000 samples** per language.
25
+ - **For 40B models (Base or Instruct)**: Start with **20,000 to 100,000 samples** per language
26
+
27
+ ([SmoothQuant](https://ar5iv.org/pdf/2211.10438v1), [QLLM](https://openreview.net/forum?id=QLLLm)).
28
+
29
+ ## **3. Balance Languages**
30
+ - For **multilingual models**, ensure you gather **balanced datasets** across languages. If resources are limited, start with a **minimum of 1,000 samples** per language and adjust based on performance ([QLLM](https://openreview.net/forum?id=QLLLm)).
31
+
32
+ ## **4. Outlier Handling in Large Models**
33
+ For models over 7B parameters, address outliers in activations using methods like **channel-wise quantization**. Larger models require more robust outlier handling, which can be mitigated by using enough calibration data ([QLLM](https://openreview.net/forum?id=QLLLm), [SmoothQuant](https://ar5iv.org/pdf/2211.10438v1)).
34
+
35
+ <small>note: llama.cpp supports several quantization methods, including row-wise and block-wise quantization schemes but there is no ready support for channel-wise quantization.</small>
36
+
37
+ ## **5. Start Small and Scale**
38
+ Begin with smaller datasets, evaluate the quantized model’s performance, and scale up as needed. **Add more samples** if you see significant drops in accuracy or performance after quantization ([Comprehensive Evaluation](https://aclanthology.org/2024-comprehensive), [DataCamp, 2023](https://www.datacamp.com/community/tutorials/quantization-llms)).
39
+
40
+ <small>note: This is beyond the scope of the work in this repo.</small>
41
+
42
+ # This work
43
+
44
+ We have many languages. We could measure the rate of change in PPL for one model each of Q8_0, q4_K_M, and iq3_K starting at, say 10 samples/language to some intermediate (say 200, assuming we sample enough intermediate steps to feel we have the rate of change nailed down), then predict PPL at 1k samples. If the PPL is small than expected, we are reaching diminishing returns and can stop increasing. However, as a first attempt we will only quantize to the minimums in the range.
45
+
46
+ ---
47
+
48
+ ### **References**
49
+ 1. **SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models**
50
+ - Authors: Xiao et al.
51
+ - Year: 2023
52
+ - Source: [arXiv](https://ar5iv.org/pdf/2211.10438v1)
53
+ - Summary: This paper addresses activation outliers in large models and recommends using calibration samples for effective quantization.
54
+
55
+ 2. **QLLM: Accurate and Efficient Low-bitwidth Quantization for LLMs**
56
+ - Authors: Liu et al.
57
+ - Year: 2024
58
+ - Source: [ICLR](https://openreview.net/forum?id=QLLLm)
59
+ - Summary: QLLM focuses on outlier handling and low-bitwidth quantization for models like LLaMA, recommending balanced datasets and channel-wise techniques.
60
+
61
+ 3. **A Comprehensive Evaluation of Quantization Strategies for Large Language Models**
62
+ - Authors: Jin et al.
63
+ - Year: 2024
64
+ - Source: [ACL Anthology](https://aclanthology.org/2024-comprehensive)
65
+ - Summary: Provides a thorough evaluation of quantization strategies on various LLMs, noting that several thousand samples per task are often needed.
66
+
67
+ 4. **Quantization for Large Language Models (LLMs): Reduce AI Model Sizes Efficiently**
68
+ - Year: 2023
69
+ - Source: [DataCamp](https://www.datacamp.com/community/tutorials/quantization-llms)
70
+ - Summary: Introduces practical methods for quantizing models and discusses dataset requirements for ensuring performance.
71
+
72
+ 5. **Lens: Rethinking Multilingual Enhancement for Large Language Models**
73
+ - Authors: Zhao, Weixiang, et al.
74
+ - Year: 2024
75
+ - Source: [arXiv](https://ar5iv.org/html/2410.04407)
76
+ - Summary: This study emphasizes that as the number of languages increases, the number of samples required for quantization grows. Multilingual models need larger datasets to maintain performance across all languages. The authors recommend scaling the number of samples per language as the model size and the number of target languages increase.
77
+
78
+ 6 **How Does Quantization Affect Multilingual LLMs?**
79
+ - Authors: Ahmadian et al.
80
+ - Year: 2024
81
+ - Source: [arXiv](https://ar5iv.org/abs/2407.03211)
82
+ - Summary: This paper explores the impact of quantization on multilingual LLMs. It highlights the need for larger datasets as the number of target languages increases and suggests using several thousand calibration samples per language to mitigate performance degradation.
83
+
84
+ 7 **Emergent Abilities of Large Language Models**
85
+ - Authors: Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., ... & Fedus, W.
86
+ - Year: 2022
87
+ - Source: [arXiv](https://ar5iv.org/abs/2206.07682)
88
+ - Summary: This paper investigates emergent abilities in large language models as they scale in size. The authors demonstrate how model capabilities appear unexpectedly at certain scale thresholds.
89
+
90
+ 8 **Scaling Instruction-Finetuned Language Models**
91
+ - Authors: Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., ... & Le, Q. V.
92
+ - Year: 2022
93
+ - Source: [arXiv](https://ar5iv.org/abs/2210.11416)
94
+ - Summary: The authors explore the scaling of instruction-finetuned language models and their impact on downstream task performance, showing how larger models benefit from instruction tuning.
95
+
96
+ 9 **Instruction Tuning for Large Language Models: A Survey**
97
+ - Authors: Honovich, O., Shaham, U., Bowman, S. R., & Levy, O.
98
+ - Year: 2023
99
+ - Source: [arXiv](https://ar5iv.org/abs/2308.10792)
100
+ - Summary: This survey paper provides a comprehensive overview of instruction tuning for large language models, summarizing recent advances and challenges in optimizing models for specific instructions.
perplexity_IQ2_M.txt ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
2
+ llama_model_loader: loaded meta data with 35 key-value pairs and 219 tensors from salamandra-2b-instruct_IQ2_M.gguf (version GGUF V3 (latest))
3
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
4
+ llama_model_loader: - kv 0: general.architecture str = llama
5
+ llama_model_loader: - kv 1: general.type str = model
6
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
7
+ llama_model_loader: - kv 3: general.license str = apache-2.0
8
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
9
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
10
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
11
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
12
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
13
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
14
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
15
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
16
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
17
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
18
+ llama_model_loader: - kv 14: general.file_type u32 = 29
19
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
20
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
21
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
22
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
23
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
24
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
25
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
26
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
27
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
28
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
29
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
30
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
31
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
32
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
33
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
34
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
35
+ llama_model_loader: - kv 31: quantize.imatrix.file str = imatrix/oscar/imatrix.dat
36
+ llama_model_loader: - kv 32: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt
37
+ llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 168
38
+ llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 44176
39
+ llama_model_loader: - type f32: 49 tensors
40
+ llama_model_loader: - type iq4_nl: 24 tensors
41
+ llama_model_loader: - type iq3_s: 49 tensors
42
+ llama_model_loader: - type iq2_s: 96 tensors
43
+ llama_model_loader: - type bf16: 1 tensors
44
+ llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
45
+ llm_load_vocab: special tokens cache size = 104
46
+ llm_load_vocab: token to piece cache size = 1.8842 MB
47
+ llm_load_print_meta: format = GGUF V3 (latest)
48
+ llm_load_print_meta: arch = llama
49
+ llm_load_print_meta: vocab type = SPM
50
+ llm_load_print_meta: n_vocab = 256000
51
+ llm_load_print_meta: n_merges = 0
52
+ llm_load_print_meta: vocab_only = 0
53
+ llm_load_print_meta: n_ctx_train = 8192
54
+ llm_load_print_meta: n_embd = 2048
55
+ llm_load_print_meta: n_layer = 24
56
+ llm_load_print_meta: n_head = 16
57
+ llm_load_print_meta: n_head_kv = 16
58
+ llm_load_print_meta: n_rot = 128
59
+ llm_load_print_meta: n_swa = 0
60
+ llm_load_print_meta: n_embd_head_k = 128
61
+ llm_load_print_meta: n_embd_head_v = 128
62
+ llm_load_print_meta: n_gqa = 1
63
+ llm_load_print_meta: n_embd_k_gqa = 2048
64
+ llm_load_print_meta: n_embd_v_gqa = 2048
65
+ llm_load_print_meta: f_norm_eps = 0.0e+00
66
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
67
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
68
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
69
+ llm_load_print_meta: f_logit_scale = 0.0e+00
70
+ llm_load_print_meta: n_ff = 5440
71
+ llm_load_print_meta: n_expert = 0
72
+ llm_load_print_meta: n_expert_used = 0
73
+ llm_load_print_meta: causal attn = 1
74
+ llm_load_print_meta: pooling type = 0
75
+ llm_load_print_meta: rope type = 0
76
+ llm_load_print_meta: rope scaling = linear
77
+ llm_load_print_meta: freq_base_train = 10000.0
78
+ llm_load_print_meta: freq_scale_train = 1
79
+ llm_load_print_meta: n_ctx_orig_yarn = 8192
80
+ llm_load_print_meta: rope_finetuned = unknown
81
+ llm_load_print_meta: ssm_d_conv = 0
82
+ llm_load_print_meta: ssm_d_inner = 0
83
+ llm_load_print_meta: ssm_d_state = 0
84
+ llm_load_print_meta: ssm_dt_rank = 0
85
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
86
+ llm_load_print_meta: model type = ?B
87
+ llm_load_print_meta: model ftype = IQ2_M - 2.7 bpw
88
+ llm_load_print_meta: model params = 2.25 B
89
+ llm_load_print_meta: model size = 1.63 GiB (6.20 BPW)
90
+ llm_load_print_meta: general.name = n/a
91
+ llm_load_print_meta: BOS token = 1 '<s>'
92
+ llm_load_print_meta: EOS token = 2 '</s>'
93
+ llm_load_print_meta: UNK token = 0 '<unk>'
94
+ llm_load_print_meta: PAD token = 0 '<unk>'
95
+ llm_load_print_meta: LF token = 145 '<0x0A>'
96
+ llm_load_print_meta: EOT token = 5 '<|im_end|>'
97
+ llm_load_print_meta: EOG token = 2 '</s>'
98
+ llm_load_print_meta: EOG token = 5 '<|im_end|>'
99
+ llm_load_print_meta: max token length = 72
100
+ llm_load_tensors: ggml ctx size = 0.20 MiB
101
+ llm_load_tensors: offloading 24 repeating layers to GPU
102
+ llm_load_tensors: offloading non-repeating layers to GPU
103
+ llm_load_tensors: offloaded 25/25 layers to GPU
104
+ llm_load_tensors: Metal buffer size = 1666.03 MiB
105
+ llm_load_tensors: CPU buffer size = 214.84 MiB
106
+ .............................
107
+ llama_new_context_with_model: n_ctx = 8192
108
+ llama_new_context_with_model: n_batch = 512
109
+ llama_new_context_with_model: n_ubatch = 128
110
+ llama_new_context_with_model: flash_attn = 0
111
+ llama_new_context_with_model: freq_base = 10000.0
112
+ llama_new_context_with_model: freq_scale = 1
113
+ ggml_metal_init: allocating
114
+ ggml_metal_init: found device: Apple M3 Max
115
+ ggml_metal_init: picking default device: Apple M3 Max
116
+ ggml_metal_init: using embedded metal library
117
+ ggml_metal_init: GPU name: Apple M3 Max
118
+ ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
119
+ ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
120
+ ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
121
+ ggml_metal_init: simdgroup reduction support = true
122
+ ggml_metal_init: simdgroup matrix mul. support = true
123
+ ggml_metal_init: hasUnifiedMemory = true
124
+ ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
125
+ llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
126
+ llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
127
+ llama_new_context_with_model: CPU output buffer size = 0.98 MiB
128
+ llama_new_context_with_model: Metal compute buffer size = 72.00 MiB
129
+ llama_new_context_with_model: CPU compute buffer size = 125.00 MiB
130
+ llama_new_context_with_model: graph nodes = 774
131
+ llama_new_context_with_model: graph splits = 3
132
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
133
+
134
+ system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
135
+ perplexity: tokenizing the input ..
136
+ perplexity: tokenization took 2958.69 ms
137
+ perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1
138
+ perplexity: 9.96 seconds per pass - ETA 22.22 minutes
139
+ [1]24.6873,[2]24.9338,[3]22.0731,[4]21.5617,[5]20.3352,[6]19.5244,[7]20.9527,[8]20.4266,[9]19.9018,[10]18.9376,[11]19.8449,[12]20.0418,[13]21.7210,[14]22.2197,[15]22.1832,[16]22.8980,[17]23.3093,[18]23.1485,[19]23.1590,[20]23.5955,[21]23.5301,[22]21.2644,[23]21.4668,[24]20.8670,[25]20.1188,[26]19.4641,[27]19.1656,[28]18.8924,[29]18.7991,[30]18.4629,[31]18.8051,[32]18.8515,[33]19.4711,[34]19.8213,[35]20.1886,[36]19.7944,[37]19.7345,[38]19.8108,[39]19.5440,[40]19.5595,[41]19.5283,[42]19.2267,[43]19.1196,[44]19.3165,[45]19.5565,[46]19.3342,[47]19.7107,[48]19.9107,[49]20.3577,[50]20.8280,[51]20.8886,[52]21.2299,[53]21.7101,[54]22.1793,[55]22.3834,[56]22.1513,[57]22.0584,[58]21.6444,[59]21.4662,[60]21.1954,[61]21.2462,[62]21.4794,[63]21.7730,[64]21.8675,[65]21.9175,[66]22.2055,[67]22.1659,[68]22.0154,[69]21.8073,[70]21.6691,[71]21.6765,[72]21.6068,[73]21.6309,[74]21.5618,[75]21.5749,[76]21.4933,[77]21.5708,[78]21.5741,[79]21.5906,[80]21.6349,[81]21.1919,[82]21.1488,[83]20.9681,[84]21.0413,[85]21.1279,[86]21.4274,[87]21.4890,[88]21.7182,[89]21.8058,[90]21.9993,[91]22.0906,[92]21.8472,[93]21.9383,[94]21.9085,[95]22.1222,[96]22.3960,[97]22.5114,[98]22.6622,[99]22.9017,[100]22.9584,[101]22.9937,[102]22.9430,[103]22.8901,[104]22.8680,[105]22.8335,[106]22.6443,[107]22.4466,[108]22.5295,[109]22.5529,[110]22.4183,[111]22.3709,[112]22.1711,[113]21.9629,[114]21.9476,[115]21.8984,[116]21.8964,[117]21.7396,[118]21.5493,[119]21.5328,[120]21.6170,[121]21.6406,[122]21.6783,[123]21.7342,[124]21.7686,[125]21.7701,[126]21.8124,[127]21.8536,[128]21.9658,[129]21.9526,[130]21.9195,[131]22.0023,[132]21.9718,[133]21.8911,[134]21.6684,
140
+ Final estimate: PPL = 21.6684 +/- 0.08942
141
+
142
+ llama_perf_context_print: load time = 1070.26 ms
143
+ llama_perf_context_print: prompt eval time = 1307831.03 ms / 1097728 tokens ( 1.19 ms per token, 839.35 tokens per second)
144
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
145
+ llama_perf_context_print: total time = 1348983.83 ms / 1097729 tokens
146
+ ggml_metal_free: deallocating
perplexity_IQ2_S.txt ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
2
+ llama_model_loader: loaded meta data with 35 key-value pairs and 219 tensors from salamandra-2b-instruct_IQ2_S.gguf (version GGUF V3 (latest))
3
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
4
+ llama_model_loader: - kv 0: general.architecture str = llama
5
+ llama_model_loader: - kv 1: general.type str = model
6
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
7
+ llama_model_loader: - kv 3: general.license str = apache-2.0
8
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
9
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
10
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
11
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
12
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
13
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
14
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
15
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
16
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
17
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
18
+ llama_model_loader: - kv 14: general.file_type u32 = 28
19
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
20
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
21
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
22
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
23
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
24
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
25
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
26
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
27
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
28
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
29
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
30
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
31
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
32
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
33
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
34
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
35
+ llama_model_loader: - kv 31: quantize.imatrix.file str = imatrix/oscar/imatrix.dat
36
+ llama_model_loader: - kv 32: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt
37
+ llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 168
38
+ llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 44176
39
+ llama_model_loader: - type f32: 49 tensors
40
+ llama_model_loader: - type iq2_xs: 96 tensors
41
+ llama_model_loader: - type iq4_nl: 24 tensors
42
+ llama_model_loader: - type iq3_s: 49 tensors
43
+ llama_model_loader: - type bf16: 1 tensors
44
+ llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
45
+ llm_load_vocab: special tokens cache size = 104
46
+ llm_load_vocab: token to piece cache size = 1.8842 MB
47
+ llm_load_print_meta: format = GGUF V3 (latest)
48
+ llm_load_print_meta: arch = llama
49
+ llm_load_print_meta: vocab type = SPM
50
+ llm_load_print_meta: n_vocab = 256000
51
+ llm_load_print_meta: n_merges = 0
52
+ llm_load_print_meta: vocab_only = 0
53
+ llm_load_print_meta: n_ctx_train = 8192
54
+ llm_load_print_meta: n_embd = 2048
55
+ llm_load_print_meta: n_layer = 24
56
+ llm_load_print_meta: n_head = 16
57
+ llm_load_print_meta: n_head_kv = 16
58
+ llm_load_print_meta: n_rot = 128
59
+ llm_load_print_meta: n_swa = 0
60
+ llm_load_print_meta: n_embd_head_k = 128
61
+ llm_load_print_meta: n_embd_head_v = 128
62
+ llm_load_print_meta: n_gqa = 1
63
+ llm_load_print_meta: n_embd_k_gqa = 2048
64
+ llm_load_print_meta: n_embd_v_gqa = 2048
65
+ llm_load_print_meta: f_norm_eps = 0.0e+00
66
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
67
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
68
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
69
+ llm_load_print_meta: f_logit_scale = 0.0e+00
70
+ llm_load_print_meta: n_ff = 5440
71
+ llm_load_print_meta: n_expert = 0
72
+ llm_load_print_meta: n_expert_used = 0
73
+ llm_load_print_meta: causal attn = 1
74
+ llm_load_print_meta: pooling type = 0
75
+ llm_load_print_meta: rope type = 0
76
+ llm_load_print_meta: rope scaling = linear
77
+ llm_load_print_meta: freq_base_train = 10000.0
78
+ llm_load_print_meta: freq_scale_train = 1
79
+ llm_load_print_meta: n_ctx_orig_yarn = 8192
80
+ llm_load_print_meta: rope_finetuned = unknown
81
+ llm_load_print_meta: ssm_d_conv = 0
82
+ llm_load_print_meta: ssm_d_inner = 0
83
+ llm_load_print_meta: ssm_d_state = 0
84
+ llm_load_print_meta: ssm_dt_rank = 0
85
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
86
+ llm_load_print_meta: model type = ?B
87
+ llm_load_print_meta: model ftype = IQ2_S - 2.5 bpw
88
+ llm_load_print_meta: model params = 2.25 B
89
+ llm_load_print_meta: model size = 1.61 GiB (6.12 BPW)
90
+ llm_load_print_meta: general.name = n/a
91
+ llm_load_print_meta: BOS token = 1 '<s>'
92
+ llm_load_print_meta: EOS token = 2 '</s>'
93
+ llm_load_print_meta: UNK token = 0 '<unk>'
94
+ llm_load_print_meta: PAD token = 0 '<unk>'
95
+ llm_load_print_meta: LF token = 145 '<0x0A>'
96
+ llm_load_print_meta: EOT token = 5 '<|im_end|>'
97
+ llm_load_print_meta: EOG token = 2 '</s>'
98
+ llm_load_print_meta: EOG token = 5 '<|im_end|>'
99
+ llm_load_print_meta: max token length = 72
100
+ llm_load_tensors: ggml ctx size = 0.20 MiB
101
+ llm_load_tensors: offloading 24 repeating layers to GPU
102
+ llm_load_tensors: offloading non-repeating layers to GPU
103
+ llm_load_tensors: offloaded 25/25 layers to GPU
104
+ llm_load_tensors: Metal buffer size = 1644.10 MiB
105
+ llm_load_tensors: CPU buffer size = 214.84 MiB
106
+ ............................
107
+ llama_new_context_with_model: n_ctx = 8192
108
+ llama_new_context_with_model: n_batch = 512
109
+ llama_new_context_with_model: n_ubatch = 128
110
+ llama_new_context_with_model: flash_attn = 0
111
+ llama_new_context_with_model: freq_base = 10000.0
112
+ llama_new_context_with_model: freq_scale = 1
113
+ ggml_metal_init: allocating
114
+ ggml_metal_init: found device: Apple M3 Max
115
+ ggml_metal_init: picking default device: Apple M3 Max
116
+ ggml_metal_init: using embedded metal library
117
+ ggml_metal_init: GPU name: Apple M3 Max
118
+ ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
119
+ ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
120
+ ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
121
+ ggml_metal_init: simdgroup reduction support = true
122
+ ggml_metal_init: simdgroup matrix mul. support = true
123
+ ggml_metal_init: hasUnifiedMemory = true
124
+ ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
125
+ llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
126
+ llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
127
+ llama_new_context_with_model: CPU output buffer size = 0.98 MiB
128
+ llama_new_context_with_model: Metal compute buffer size = 72.00 MiB
129
+ llama_new_context_with_model: CPU compute buffer size = 125.00 MiB
130
+ llama_new_context_with_model: graph nodes = 774
131
+ llama_new_context_with_model: graph splits = 3
132
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
133
+
134
+ system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
135
+ perplexity: tokenizing the input ..
136
+ perplexity: tokenization took 3608.25 ms
137
+ perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1
138
+ perplexity: 13.67 seconds per pass - ETA 30.53 minutes
139
+ [1]29.6010,[2]29.5172,[3]25.7862,[4]25.0898,[5]23.4808,[6]22.3861,[7]24.0240,[8]23.4845,[9]22.8642,[10]21.8118,[11]22.9535,[12]23.1602,[13]25.2016,[14]25.7935,[15]25.7491,[16]26.5747,[17]27.1112,[18]26.9186,[19]26.8906,[20]27.4454,[21]27.3279,[22]24.9212,[23]25.1674,[24]24.4545,[25]23.6118,[26]22.8598,[27]22.5139,[28]22.1881,[29]22.0997,[30]21.6820,[31]22.0830,[32]22.0955,[33]22.8174,[34]23.1896,[35]23.5745,[36]23.0854,[37]22.9720,[38]23.0211,[39]22.6747,[40]22.6684,[41]22.6271,[42]22.2360,[43]22.0886,[44]22.3052,[45]22.5768,[46]22.3153,[47]22.7746,[48]23.0428,[49]23.6171,[50]24.1869,[51]24.2844,[52]24.7079,[53]25.2634,[54]25.8122,[55]26.0916,[56]25.8450,[57]25.7558,[58]25.2386,[59]25.0156,[60]24.6812,[61]24.7264,[62]25.0349,[63]25.4095,[64]25.5203,[65]25.5732,[66]25.9103,[67]25.8713,[68]25.6933,[69]25.4466,[70]25.2968,[71]25.3280,[72]25.2495,[73]25.2949,[74]25.2370,[75]25.2667,[76]25.1723,[77]25.2576,[78]25.2563,[79]25.2661,[80]25.3049,[81]24.7500,[82]24.7057,[83]24.5000,[84]24.5956,[85]24.7109,[86]25.0832,[87]25.1826,[88]25.4442,[89]25.5627,[90]25.7940,[91]25.9148,[92]25.6167,[93]25.7212,[94]25.6776,[95]25.9323,[96]26.2587,[97]26.4019,[98]26.5851,[99]26.8920,[100]26.9814,[101]27.0229,[102]26.9609,[103]26.8877,[104]26.8538,[105]26.7966,[106]26.5723,[107]26.3274,[108]26.4363,[109]26.4825,[110]26.3185,[111]26.2732,[112]26.0267,[113]25.7671,[114]25.7432,[115]25.6708,[116]25.6618,[117]25.4755,[118]25.2418,[119]25.2166,[120]25.3133,[121]25.3392,[122]25.3860,[123]25.4629,[124]25.4971,[125]25.5046,[126]25.5585,[127]25.6160,[128]25.7583,[129]25.7385,[130]25.6987,[131]25.7995,[132]25.7599,[133]25.6648,[134]25.3893,
140
+ Final estimate: PPL = 25.3893 +/- 0.10575
141
+
142
+ llama_perf_context_print: load time = 637.32 ms
143
+ llama_perf_context_print: prompt eval time = 1669379.99 ms / 1097728 tokens ( 1.52 ms per token, 657.57 tokens per second)
144
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
145
+ llama_perf_context_print: total time = 1728537.03 ms / 1097729 tokens
146
+ ggml_metal_free: deallocating
perplexity_IQ3_M.txt ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
2
+ llama_model_loader: loaded meta data with 35 key-value pairs and 219 tensors from salamandra-2b-instruct_IQ3_M.gguf (version GGUF V3 (latest))
3
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
4
+ llama_model_loader: - kv 0: general.architecture str = llama
5
+ llama_model_loader: - kv 1: general.type str = model
6
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
7
+ llama_model_loader: - kv 3: general.license str = apache-2.0
8
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
9
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
10
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
11
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
12
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
13
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
14
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
15
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
16
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
17
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
18
+ llama_model_loader: - kv 14: general.file_type u32 = 27
19
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
20
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
21
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
22
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
23
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
24
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
25
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
26
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
27
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
28
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
29
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
30
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
31
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
32
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
33
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
34
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
35
+ llama_model_loader: - kv 31: quantize.imatrix.file str = imatrix/oscar/imatrix.dat
36
+ llama_model_loader: - kv 32: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt
37
+ llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 168
38
+ llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 44176
39
+ llama_model_loader: - type f32: 49 tensors
40
+ llama_model_loader: - type q5_0: 3 tensors
41
+ llama_model_loader: - type q4_K: 48 tensors
42
+ llama_model_loader: - type iq4_nl: 21 tensors
43
+ llama_model_loader: - type iq3_s: 97 tensors
44
+ llama_model_loader: - type bf16: 1 tensors
45
+ llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
46
+ llm_load_vocab: special tokens cache size = 104
47
+ llm_load_vocab: token to piece cache size = 1.8842 MB
48
+ llm_load_print_meta: format = GGUF V3 (latest)
49
+ llm_load_print_meta: arch = llama
50
+ llm_load_print_meta: vocab type = SPM
51
+ llm_load_print_meta: n_vocab = 256000
52
+ llm_load_print_meta: n_merges = 0
53
+ llm_load_print_meta: vocab_only = 0
54
+ llm_load_print_meta: n_ctx_train = 8192
55
+ llm_load_print_meta: n_embd = 2048
56
+ llm_load_print_meta: n_layer = 24
57
+ llm_load_print_meta: n_head = 16
58
+ llm_load_print_meta: n_head_kv = 16
59
+ llm_load_print_meta: n_rot = 128
60
+ llm_load_print_meta: n_swa = 0
61
+ llm_load_print_meta: n_embd_head_k = 128
62
+ llm_load_print_meta: n_embd_head_v = 128
63
+ llm_load_print_meta: n_gqa = 1
64
+ llm_load_print_meta: n_embd_k_gqa = 2048
65
+ llm_load_print_meta: n_embd_v_gqa = 2048
66
+ llm_load_print_meta: f_norm_eps = 0.0e+00
67
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
68
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
69
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
70
+ llm_load_print_meta: f_logit_scale = 0.0e+00
71
+ llm_load_print_meta: n_ff = 5440
72
+ llm_load_print_meta: n_expert = 0
73
+ llm_load_print_meta: n_expert_used = 0
74
+ llm_load_print_meta: causal attn = 1
75
+ llm_load_print_meta: pooling type = 0
76
+ llm_load_print_meta: rope type = 0
77
+ llm_load_print_meta: rope scaling = linear
78
+ llm_load_print_meta: freq_base_train = 10000.0
79
+ llm_load_print_meta: freq_scale_train = 1
80
+ llm_load_print_meta: n_ctx_orig_yarn = 8192
81
+ llm_load_print_meta: rope_finetuned = unknown
82
+ llm_load_print_meta: ssm_d_conv = 0
83
+ llm_load_print_meta: ssm_d_inner = 0
84
+ llm_load_print_meta: ssm_d_state = 0
85
+ llm_load_print_meta: ssm_dt_rank = 0
86
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
87
+ llm_load_print_meta: model type = ?B
88
+ llm_load_print_meta: model ftype = IQ3_S mix - 3.66 bpw
89
+ llm_load_print_meta: model params = 2.25 B
90
+ llm_load_print_meta: model size = 1.73 GiB (6.60 BPW)
91
+ llm_load_print_meta: general.name = n/a
92
+ llm_load_print_meta: BOS token = 1 '<s>'
93
+ llm_load_print_meta: EOS token = 2 '</s>'
94
+ llm_load_print_meta: UNK token = 0 '<unk>'
95
+ llm_load_print_meta: PAD token = 0 '<unk>'
96
+ llm_load_print_meta: LF token = 145 '<0x0A>'
97
+ llm_load_print_meta: EOT token = 5 '<|im_end|>'
98
+ llm_load_print_meta: EOG token = 2 '</s>'
99
+ llm_load_print_meta: EOG token = 5 '<|im_end|>'
100
+ llm_load_print_meta: max token length = 72
101
+ llm_load_tensors: ggml ctx size = 0.20 MiB
102
+ llm_load_tensors: offloading 24 repeating layers to GPU
103
+ llm_load_tensors: offloading non-repeating layers to GPU
104
+ llm_load_tensors: offloaded 25/25 layers to GPU
105
+ llm_load_tensors: Metal buffer size = 1772.30 MiB
106
+ llm_load_tensors: CPU buffer size = 214.84 MiB
107
+ .................................
108
+ llama_new_context_with_model: n_ctx = 8192
109
+ llama_new_context_with_model: n_batch = 512
110
+ llama_new_context_with_model: n_ubatch = 128
111
+ llama_new_context_with_model: flash_attn = 0
112
+ llama_new_context_with_model: freq_base = 10000.0
113
+ llama_new_context_with_model: freq_scale = 1
114
+ ggml_metal_init: allocating
115
+ ggml_metal_init: found device: Apple M3 Max
116
+ ggml_metal_init: picking default device: Apple M3 Max
117
+ ggml_metal_init: using embedded metal library
118
+ ggml_metal_init: GPU name: Apple M3 Max
119
+ ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
120
+ ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
121
+ ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
122
+ ggml_metal_init: simdgroup reduction support = true
123
+ ggml_metal_init: simdgroup matrix mul. support = true
124
+ ggml_metal_init: hasUnifiedMemory = true
125
+ ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
126
+ llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
127
+ llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
128
+ llama_new_context_with_model: CPU output buffer size = 0.98 MiB
129
+ llama_new_context_with_model: Metal compute buffer size = 72.00 MiB
130
+ llama_new_context_with_model: CPU compute buffer size = 125.00 MiB
131
+ llama_new_context_with_model: graph nodes = 774
132
+ llama_new_context_with_model: graph splits = 3
133
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
134
+
135
+ system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
136
+ perplexity: tokenizing the input ..
137
+ perplexity: tokenization took 2890.34 ms
138
+ perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1
139
+ perplexity: 9.83 seconds per pass - ETA 21.93 minutes
140
+ [1]18.4061,[2]18.7228,[3]16.9636,[4]16.6911,[5]15.9315,[6]15.4477,[7]16.4143,[8]15.9441,[9]15.6135,[10]14.8634,[11]15.5641,[12]15.6470,[13]16.7989,[14]17.1072,[15]17.0945,[16]17.6727,[17]17.9948,[18]17.8842,[19]17.9218,[20]18.2708,[21]18.2889,[22]16.2120,[23]16.4019,[24]15.9924,[25]15.4426,[26]14.9617,[27]14.7509,[28]14.5617,[29]14.5069,[30]14.2784,[31]14.5307,[32]14.6402,[33]15.1358,[34]15.4459,[35]15.7638,[36]15.4968,[37]15.4756,[38]15.5472,[39]15.3758,[40]15.4026,[41]15.3792,[42]15.1704,[43]15.1092,[44]15.2776,[45]15.4926,[46]15.3325,[47]15.5945,[48]15.7287,[49]16.0399,[50]16.3537,[51]16.3955,[52]16.6311,[53]16.9749,[54]17.3215,[55]17.4507,[56]17.2744,[57]17.1832,[58]16.8902,[59]16.7721,[60]16.5675,[61]16.6174,[62]16.7689,[63]16.9712,[64]17.0356,[65]17.0683,[66]17.2709,[67]17.2451,[68]17.1232,[69]16.9706,[70]16.8599,[71]16.8582,[72]16.8005,[73]16.8126,[74]16.7535,[75]16.7409,[76]16.6818,[77]16.7421,[78]16.7394,[79]16.7468,[80]16.7839,[81]16.4756,[82]16.4519,[83]16.3109,[84]16.3508,[85]16.4038,[86]16.6127,[87]16.6455,[88]16.8133,[89]16.8720,[90]17.0075,[91]17.0714,[92]16.8962,[93]16.9663,[94]16.9512,[95]17.0981,[96]17.3049,[97]17.3865,[98]17.4932,[99]17.6478,[100]17.6922,[101]17.7221,[102]17.6839,[103]17.6504,[104]17.6344,[105]17.6155,[106]17.4776,[107]17.3381,[108]17.4053,[109]17.4274,[110]17.3304,[111]17.2922,[112]17.1356,[113]16.9843,[114]16.9750,[115]16.9445,[116]16.9529,[117]16.8367,[118]16.6960,[119]16.6880,[120]16.7538,[121]16.7715,[122]16.7987,[123]16.8405,[124]16.8602,[125]16.8544,[126]16.8818,[127]16.9109,[128]16.9952,[129]16.9866,[130]16.9615,[131]17.0232,[132]16.9991,[133]16.9385,[134]16.7740,
141
+ Final estimate: PPL = 16.7740 +/- 0.06799
142
+
143
+ llama_perf_context_print: load time = 1199.03 ms
144
+ llama_perf_context_print: prompt eval time = 1313152.96 ms / 1097728 tokens ( 1.20 ms per token, 835.95 tokens per second)
145
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
146
+ llama_perf_context_print: total time = 1353111.24 ms / 1097729 tokens
147
+ ggml_metal_free: deallocating
perplexity_IQ4_NL.txt ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
2
+ llama_model_loader: loaded meta data with 35 key-value pairs and 219 tensors from salamandra-2b-instruct_IQ4_NL.gguf (version GGUF V3 (latest))
3
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
4
+ llama_model_loader: - kv 0: general.architecture str = llama
5
+ llama_model_loader: - kv 1: general.type str = model
6
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
7
+ llama_model_loader: - kv 3: general.license str = apache-2.0
8
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
9
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
10
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
11
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
12
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
13
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
14
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
15
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
16
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
17
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
18
+ llama_model_loader: - kv 14: general.file_type u32 = 25
19
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
20
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
21
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
22
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
23
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
24
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
25
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
26
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
27
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
28
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
29
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
30
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
31
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
32
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
33
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
34
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
35
+ llama_model_loader: - kv 31: quantize.imatrix.file str = imatrix/oscar/imatrix.dat
36
+ llama_model_loader: - kv 32: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt
37
+ llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 168
38
+ llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 44176
39
+ llama_model_loader: - type f32: 49 tensors
40
+ llama_model_loader: - type iq4_nl: 169 tensors
41
+ llama_model_loader: - type bf16: 1 tensors
42
+ llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
43
+ llm_load_vocab: special tokens cache size = 104
44
+ llm_load_vocab: token to piece cache size = 1.8842 MB
45
+ llm_load_print_meta: format = GGUF V3 (latest)
46
+ llm_load_print_meta: arch = llama
47
+ llm_load_print_meta: vocab type = SPM
48
+ llm_load_print_meta: n_vocab = 256000
49
+ llm_load_print_meta: n_merges = 0
50
+ llm_load_print_meta: vocab_only = 0
51
+ llm_load_print_meta: n_ctx_train = 8192
52
+ llm_load_print_meta: n_embd = 2048
53
+ llm_load_print_meta: n_layer = 24
54
+ llm_load_print_meta: n_head = 16
55
+ llm_load_print_meta: n_head_kv = 16
56
+ llm_load_print_meta: n_rot = 128
57
+ llm_load_print_meta: n_swa = 0
58
+ llm_load_print_meta: n_embd_head_k = 128
59
+ llm_load_print_meta: n_embd_head_v = 128
60
+ llm_load_print_meta: n_gqa = 1
61
+ llm_load_print_meta: n_embd_k_gqa = 2048
62
+ llm_load_print_meta: n_embd_v_gqa = 2048
63
+ llm_load_print_meta: f_norm_eps = 0.0e+00
64
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
65
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
66
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
67
+ llm_load_print_meta: f_logit_scale = 0.0e+00
68
+ llm_load_print_meta: n_ff = 5440
69
+ llm_load_print_meta: n_expert = 0
70
+ llm_load_print_meta: n_expert_used = 0
71
+ llm_load_print_meta: causal attn = 1
72
+ llm_load_print_meta: pooling type = 0
73
+ llm_load_print_meta: rope type = 0
74
+ llm_load_print_meta: rope scaling = linear
75
+ llm_load_print_meta: freq_base_train = 10000.0
76
+ llm_load_print_meta: freq_scale_train = 1
77
+ llm_load_print_meta: n_ctx_orig_yarn = 8192
78
+ llm_load_print_meta: rope_finetuned = unknown
79
+ llm_load_print_meta: ssm_d_conv = 0
80
+ llm_load_print_meta: ssm_d_inner = 0
81
+ llm_load_print_meta: ssm_d_state = 0
82
+ llm_load_print_meta: ssm_dt_rank = 0
83
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
84
+ llm_load_print_meta: model type = ?B
85
+ llm_load_print_meta: model ftype = IQ4_NL - 4.5 bpw
86
+ llm_load_print_meta: model params = 2.25 B
87
+ llm_load_print_meta: model size = 1.88 GiB (7.18 BPW)
88
+ llm_load_print_meta: general.name = n/a
89
+ llm_load_print_meta: BOS token = 1 '<s>'
90
+ llm_load_print_meta: EOS token = 2 '</s>'
91
+ llm_load_print_meta: UNK token = 0 '<unk>'
92
+ llm_load_print_meta: PAD token = 0 '<unk>'
93
+ llm_load_print_meta: LF token = 145 '<0x0A>'
94
+ llm_load_print_meta: EOT token = 5 '<|im_end|>'
95
+ llm_load_print_meta: EOG token = 2 '</s>'
96
+ llm_load_print_meta: EOG token = 5 '<|im_end|>'
97
+ llm_load_print_meta: max token length = 72
98
+ llm_load_tensors: ggml ctx size = 0.20 MiB
99
+ llm_load_tensors: offloading 24 repeating layers to GPU
100
+ llm_load_tensors: offloading non-repeating layers to GPU
101
+ llm_load_tensors: offloaded 25/25 layers to GPU
102
+ llm_load_tensors: Metal buffer size = 1927.95 MiB
103
+ llm_load_tensors: CPU buffer size = 281.25 MiB
104
+ ....................................
105
+ llama_new_context_with_model: n_ctx = 8192
106
+ llama_new_context_with_model: n_batch = 512
107
+ llama_new_context_with_model: n_ubatch = 128
108
+ llama_new_context_with_model: flash_attn = 0
109
+ llama_new_context_with_model: freq_base = 10000.0
110
+ llama_new_context_with_model: freq_scale = 1
111
+ ggml_metal_init: allocating
112
+ ggml_metal_init: found device: Apple M3 Max
113
+ ggml_metal_init: picking default device: Apple M3 Max
114
+ ggml_metal_init: using embedded metal library
115
+ ggml_metal_init: GPU name: Apple M3 Max
116
+ ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
117
+ ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
118
+ ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
119
+ ggml_metal_init: simdgroup reduction support = true
120
+ ggml_metal_init: simdgroup matrix mul. support = true
121
+ ggml_metal_init: hasUnifiedMemory = true
122
+ ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
123
+ llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
124
+ llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
125
+ llama_new_context_with_model: CPU output buffer size = 0.98 MiB
126
+ llama_new_context_with_model: Metal compute buffer size = 72.00 MiB
127
+ llama_new_context_with_model: CPU compute buffer size = 125.00 MiB
128
+ llama_new_context_with_model: graph nodes = 774
129
+ llama_new_context_with_model: graph splits = 3
130
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
131
+
132
+ system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
133
+ perplexity: tokenizing the input ..
134
+ perplexity: tokenization took 2930.16 ms
135
+ perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1
136
+ perplexity: 10.21 seconds per pass - ETA 22.80 minutes
137
+ [1]17.8129,[2]18.1041,[3]16.4180,[4]16.1482,[5]15.4605,[6]14.9659,[7]15.8652,[8]15.3564,[9]15.0572,[10]14.3328,[11]14.9764,[12]15.0290,[13]16.1215,[14]16.4023,[15]16.3759,[16]16.9183,[17]17.2192,[18]17.1140,[19]17.1522,[20]17.4642,[21]17.4981,[22]15.4612,[23]15.6374,[24]15.2560,[25]14.7359,[26]14.2838,[27]14.0927,[28]13.9146,[29]13.8618,[30]13.6526,[31]13.8921,[32]13.9902,[33]14.4671,[34]14.7690,[35]15.0739,[36]14.8319,[37]14.8161,[38]14.8899,[39]14.7338,[40]14.7628,[41]14.7376,[42]14.5433,[43]14.4871,[44]14.6541,[45]14.8603,[46]14.7111,[47]14.9554,[48]15.0698,[49]15.3552,[50]15.6439,[51]15.6804,[52]15.8969,[53]16.2215,[54]16.5492,[55]16.6635,[56]16.4929,[57]16.3979,[58]16.1194,[59]16.0097,[60]15.8135,[61]15.8653,[62]16.0048,[63]16.1949,[64]16.2594,[65]16.2889,[66]16.4813,[67]16.4558,[68]16.3421,[69]16.1984,[70]16.0900,[71]16.0856,[72]16.0296,[73]16.0389,[74]15.9815,[75]15.9688,[76]15.9092,[77]15.9666,[78]15.9660,[79]15.9735,[80]16.0090,[81]15.7020,[82]15.6750,[83]15.5430,[84]15.5791,[85]15.6284,[86]15.8285,[87]15.8571,[88]16.0137,[89]16.0674,[90]16.1958,[91]16.2560,[92]16.0914,[93]16.1578,[94]16.1434,[95]16.2849,[96]16.4783,[97]16.5552,[98]16.6532,[99]16.8006,[100]16.8424,[101]16.8692,[102]16.8301,[103]16.8010,[104]16.7855,[105]16.7688,[106]16.6373,[107]16.5060,[108]16.5673,[109]16.5854,[110]16.4956,[111]16.4596,[112]16.3089,[113]16.1649,[114]16.1582,[115]16.1324,[116]16.1411,[117]16.0320,[118]15.8980,[119]15.8904,[120]15.9506,[121]15.9657,[122]15.9907,[123]16.0273,[124]16.0451,[125]16.0401,[126]16.0667,[127]16.0905,[128]16.1714,[129]16.1614,[130]16.1365,[131]16.1945,[132]16.1701,[133]16.1129,[134]15.9602,
138
+ Final estimate: PPL = 15.9602 +/- 0.06509
139
+
140
+ llama_perf_context_print: load time = 1276.58 ms
141
+ llama_perf_context_print: prompt eval time = 1349267.03 ms / 1097728 tokens ( 1.23 ms per token, 813.57 tokens per second)
142
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
143
+ llama_perf_context_print: total time = 1388038.33 ms / 1097729 tokens
144
+ ggml_metal_free: deallocating
perplexity_IQ4_XS.txt ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
2
+ llama_model_loader: loaded meta data with 35 key-value pairs and 219 tensors from salamandra-2b-instruct_IQ4_XS.gguf (version GGUF V3 (latest))
3
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
4
+ llama_model_loader: - kv 0: general.architecture str = llama
5
+ llama_model_loader: - kv 1: general.type str = model
6
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
7
+ llama_model_loader: - kv 3: general.license str = apache-2.0
8
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
9
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
10
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
11
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
12
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
13
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
14
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
15
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
16
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
17
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
18
+ llama_model_loader: - kv 14: general.file_type u32 = 30
19
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
20
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
21
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
22
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
23
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
24
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
25
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
26
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
27
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
28
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
29
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
30
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
31
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
32
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
33
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
34
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
35
+ llama_model_loader: - kv 31: quantize.imatrix.file str = imatrix/oscar/imatrix.dat
36
+ llama_model_loader: - kv 32: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt
37
+ llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 168
38
+ llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 44176
39
+ llama_model_loader: - type f32: 49 tensors
40
+ llama_model_loader: - type iq4_nl: 24 tensors
41
+ llama_model_loader: - type iq4_xs: 145 tensors
42
+ llama_model_loader: - type bf16: 1 tensors
43
+ llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
44
+ llm_load_vocab: special tokens cache size = 104
45
+ llm_load_vocab: token to piece cache size = 1.8842 MB
46
+ llm_load_print_meta: format = GGUF V3 (latest)
47
+ llm_load_print_meta: arch = llama
48
+ llm_load_print_meta: vocab type = SPM
49
+ llm_load_print_meta: n_vocab = 256000
50
+ llm_load_print_meta: n_merges = 0
51
+ llm_load_print_meta: vocab_only = 0
52
+ llm_load_print_meta: n_ctx_train = 8192
53
+ llm_load_print_meta: n_embd = 2048
54
+ llm_load_print_meta: n_layer = 24
55
+ llm_load_print_meta: n_head = 16
56
+ llm_load_print_meta: n_head_kv = 16
57
+ llm_load_print_meta: n_rot = 128
58
+ llm_load_print_meta: n_swa = 0
59
+ llm_load_print_meta: n_embd_head_k = 128
60
+ llm_load_print_meta: n_embd_head_v = 128
61
+ llm_load_print_meta: n_gqa = 1
62
+ llm_load_print_meta: n_embd_k_gqa = 2048
63
+ llm_load_print_meta: n_embd_v_gqa = 2048
64
+ llm_load_print_meta: f_norm_eps = 0.0e+00
65
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
66
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
67
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
68
+ llm_load_print_meta: f_logit_scale = 0.0e+00
69
+ llm_load_print_meta: n_ff = 5440
70
+ llm_load_print_meta: n_expert = 0
71
+ llm_load_print_meta: n_expert_used = 0
72
+ llm_load_print_meta: causal attn = 1
73
+ llm_load_print_meta: pooling type = 0
74
+ llm_load_print_meta: rope type = 0
75
+ llm_load_print_meta: rope scaling = linear
76
+ llm_load_print_meta: freq_base_train = 10000.0
77
+ llm_load_print_meta: freq_scale_train = 1
78
+ llm_load_print_meta: n_ctx_orig_yarn = 8192
79
+ llm_load_print_meta: rope_finetuned = unknown
80
+ llm_load_print_meta: ssm_d_conv = 0
81
+ llm_load_print_meta: ssm_d_inner = 0
82
+ llm_load_print_meta: ssm_d_state = 0
83
+ llm_load_print_meta: ssm_dt_rank = 0
84
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
85
+ llm_load_print_meta: model type = ?B
86
+ llm_load_print_meta: model ftype = IQ4_XS - 4.25 bpw
87
+ llm_load_print_meta: model params = 2.25 B
88
+ llm_load_print_meta: model size = 1.84 GiB (7.01 BPW)
89
+ llm_load_print_meta: general.name = n/a
90
+ llm_load_print_meta: BOS token = 1 '<s>'
91
+ llm_load_print_meta: EOS token = 2 '</s>'
92
+ llm_load_print_meta: UNK token = 0 '<unk>'
93
+ llm_load_print_meta: PAD token = 0 '<unk>'
94
+ llm_load_print_meta: LF token = 145 '<0x0A>'
95
+ llm_load_print_meta: EOT token = 5 '<|im_end|>'
96
+ llm_load_print_meta: EOG token = 2 '</s>'
97
+ llm_load_print_meta: EOG token = 5 '<|im_end|>'
98
+ llm_load_print_meta: max token length = 72
99
+ llm_load_tensors: ggml ctx size = 0.20 MiB
100
+ llm_load_tensors: offloading 24 repeating layers to GPU
101
+ llm_load_tensors: offloading non-repeating layers to GPU
102
+ llm_load_tensors: offloaded 25/25 layers to GPU
103
+ llm_load_tensors: Metal buffer size = 1884.39 MiB
104
+ llm_load_tensors: CPU buffer size = 265.62 MiB
105
+ ..................................
106
+ llama_new_context_with_model: n_ctx = 8192
107
+ llama_new_context_with_model: n_batch = 512
108
+ llama_new_context_with_model: n_ubatch = 128
109
+ llama_new_context_with_model: flash_attn = 0
110
+ llama_new_context_with_model: freq_base = 10000.0
111
+ llama_new_context_with_model: freq_scale = 1
112
+ ggml_metal_init: allocating
113
+ ggml_metal_init: found device: Apple M3 Max
114
+ ggml_metal_init: picking default device: Apple M3 Max
115
+ ggml_metal_init: using embedded metal library
116
+ ggml_metal_init: GPU name: Apple M3 Max
117
+ ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
118
+ ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
119
+ ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
120
+ ggml_metal_init: simdgroup reduction support = true
121
+ ggml_metal_init: simdgroup matrix mul. support = true
122
+ ggml_metal_init: hasUnifiedMemory = true
123
+ ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
124
+ llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
125
+ llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
126
+ llama_new_context_with_model: CPU output buffer size = 0.98 MiB
127
+ llama_new_context_with_model: Metal compute buffer size = 72.00 MiB
128
+ llama_new_context_with_model: CPU compute buffer size = 125.00 MiB
129
+ llama_new_context_with_model: graph nodes = 774
130
+ llama_new_context_with_model: graph splits = 3
131
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
132
+
133
+ system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
134
+ perplexity: tokenizing the input ..
135
+ perplexity: tokenization took 3099.45 ms
136
+ perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1
137
+ perplexity: 10.31 seconds per pass - ETA 23.00 minutes
138
+ [1]17.8167,[2]18.0705,[3]16.3976,[4]16.1215,[5]15.4362,[6]14.9422,[7]15.8537,[8]15.3436,[9]15.0474,[10]14.3227,[11]14.9690,[12]15.0226,[13]16.1201,[14]16.4014,[15]16.3742,[16]16.9158,[17]17.2166,[18]17.1125,[19]17.1527,[20]17.4651,[21]17.5004,[22]15.4609,[23]15.6366,[24]15.2567,[25]14.7378,[26]14.2840,[27]14.0919,[28]13.9120,[29]13.8603,[30]13.6514,[31]13.8921,[32]13.9921,[33]14.4692,[34]14.7709,[35]15.0755,[36]14.8338,[37]14.8171,[38]14.8906,[39]14.7340,[40]14.7632,[41]14.7391,[42]14.5446,[43]14.4886,[44]14.6561,[45]14.8620,[46]14.7118,[47]14.9569,[48]15.0716,[49]15.3563,[50]15.6462,[51]15.6825,[52]15.8983,[53]16.2220,[54]16.5502,[55]16.6636,[56]16.4935,[57]16.3981,[58]16.1197,[59]16.0098,[60]15.8137,[61]15.8656,[62]16.0061,[63]16.1968,[64]16.2610,[65]16.2910,[66]16.4835,[67]16.4573,[68]16.3437,[69]16.2004,[70]16.0920,[71]16.0879,[72]16.0330,[73]16.0426,[74]15.9853,[75]15.9703,[76]15.9103,[77]15.9678,[78]15.9668,[79]15.9740,[80]16.0093,[81]15.7006,[82]15.6736,[83]15.5423,[84]15.5787,[85]15.6275,[86]15.8283,[87]15.8570,[88]16.0134,[89]16.0676,[90]16.1957,[91]16.2561,[92]16.0921,[93]16.1584,[94]16.1444,[95]16.2856,[96]16.4782,[97]16.5562,[98]16.6545,[99]16.8011,[100]16.8430,[101]16.8704,[102]16.8313,[103]16.8018,[104]16.7863,[105]16.7704,[106]16.6389,[107]16.5075,[108]16.5685,[109]16.5863,[110]16.4964,[111]16.4600,[112]16.3090,[113]16.1650,[114]16.1582,[115]16.1318,[116]16.1406,[117]16.0316,[118]15.8973,[119]15.8895,[120]15.9499,[121]15.9650,[122]15.9896,[123]16.0269,[124]16.0444,[125]16.0395,[126]16.0661,[127]16.0901,[128]16.1712,[129]16.1612,[130]16.1360,[131]16.1936,[132]16.1694,[133]16.1121,[134]15.9591,
139
+ Final estimate: PPL = 15.9591 +/- 0.06513
140
+
141
+ llama_perf_context_print: load time = 1240.44 ms
142
+ llama_perf_context_print: prompt eval time = 1316825.15 ms / 1097728 tokens ( 1.20 ms per token, 833.62 tokens per second)
143
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
144
+ llama_perf_context_print: total time = 1357907.16 ms / 1097729 tokens
145
+ ggml_metal_free: deallocating
perplexity_Q3_K_L.txt ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
2
+ llama_model_loader: loaded meta data with 35 key-value pairs and 219 tensors from salamandra-2b-instruct_Q3_K_L.gguf (version GGUF V3 (latest))
3
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
4
+ llama_model_loader: - kv 0: general.architecture str = llama
5
+ llama_model_loader: - kv 1: general.type str = model
6
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
7
+ llama_model_loader: - kv 3: general.license str = apache-2.0
8
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
9
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
10
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
11
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
12
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
13
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
14
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
15
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
16
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
17
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
18
+ llama_model_loader: - kv 14: general.file_type u32 = 13
19
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
20
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
21
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
22
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
23
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
24
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
25
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
26
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
27
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
28
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
29
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
30
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
31
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
32
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
33
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
34
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
35
+ llama_model_loader: - kv 31: quantize.imatrix.file str = imatrix/oscar/imatrix.dat
36
+ llama_model_loader: - kv 32: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt
37
+ llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 168
38
+ llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 44176
39
+ llama_model_loader: - type f32: 49 tensors
40
+ llama_model_loader: - type q5_1: 24 tensors
41
+ llama_model_loader: - type q3_K: 97 tensors
42
+ llama_model_loader: - type q5_K: 48 tensors
43
+ llama_model_loader: - type bf16: 1 tensors
44
+ llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
45
+ llm_load_vocab: special tokens cache size = 104
46
+ llm_load_vocab: token to piece cache size = 1.8842 MB
47
+ llm_load_print_meta: format = GGUF V3 (latest)
48
+ llm_load_print_meta: arch = llama
49
+ llm_load_print_meta: vocab type = SPM
50
+ llm_load_print_meta: n_vocab = 256000
51
+ llm_load_print_meta: n_merges = 0
52
+ llm_load_print_meta: vocab_only = 0
53
+ llm_load_print_meta: n_ctx_train = 8192
54
+ llm_load_print_meta: n_embd = 2048
55
+ llm_load_print_meta: n_layer = 24
56
+ llm_load_print_meta: n_head = 16
57
+ llm_load_print_meta: n_head_kv = 16
58
+ llm_load_print_meta: n_rot = 128
59
+ llm_load_print_meta: n_swa = 0
60
+ llm_load_print_meta: n_embd_head_k = 128
61
+ llm_load_print_meta: n_embd_head_v = 128
62
+ llm_load_print_meta: n_gqa = 1
63
+ llm_load_print_meta: n_embd_k_gqa = 2048
64
+ llm_load_print_meta: n_embd_v_gqa = 2048
65
+ llm_load_print_meta: f_norm_eps = 0.0e+00
66
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
67
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
68
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
69
+ llm_load_print_meta: f_logit_scale = 0.0e+00
70
+ llm_load_print_meta: n_ff = 5440
71
+ llm_load_print_meta: n_expert = 0
72
+ llm_load_print_meta: n_expert_used = 0
73
+ llm_load_print_meta: causal attn = 1
74
+ llm_load_print_meta: pooling type = 0
75
+ llm_load_print_meta: rope type = 0
76
+ llm_load_print_meta: rope scaling = linear
77
+ llm_load_print_meta: freq_base_train = 10000.0
78
+ llm_load_print_meta: freq_scale_train = 1
79
+ llm_load_print_meta: n_ctx_orig_yarn = 8192
80
+ llm_load_print_meta: rope_finetuned = unknown
81
+ llm_load_print_meta: ssm_d_conv = 0
82
+ llm_load_print_meta: ssm_d_inner = 0
83
+ llm_load_print_meta: ssm_d_state = 0
84
+ llm_load_print_meta: ssm_dt_rank = 0
85
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
86
+ llm_load_print_meta: model type = ?B
87
+ llm_load_print_meta: model ftype = Q3_K - Large
88
+ llm_load_print_meta: model params = 2.25 B
89
+ llm_load_print_meta: model size = 1.80 GiB (6.85 BPW)
90
+ llm_load_print_meta: general.name = n/a
91
+ llm_load_print_meta: BOS token = 1 '<s>'
92
+ llm_load_print_meta: EOS token = 2 '</s>'
93
+ llm_load_print_meta: UNK token = 0 '<unk>'
94
+ llm_load_print_meta: PAD token = 0 '<unk>'
95
+ llm_load_print_meta: LF token = 145 '<0x0A>'
96
+ llm_load_print_meta: EOT token = 5 '<|im_end|>'
97
+ llm_load_print_meta: EOG token = 2 '</s>'
98
+ llm_load_print_meta: EOG token = 5 '<|im_end|>'
99
+ llm_load_print_meta: max token length = 72
100
+ llm_load_tensors: ggml ctx size = 0.20 MiB
101
+ llm_load_tensors: offloading 24 repeating layers to GPU
102
+ llm_load_tensors: offloading non-repeating layers to GPU
103
+ llm_load_tensors: offloaded 25/25 layers to GPU
104
+ llm_load_tensors: Metal buffer size = 1840.13 MiB
105
+ llm_load_tensors: CPU buffer size = 214.84 MiB
106
+ ....................................
107
+ llama_new_context_with_model: n_ctx = 8192
108
+ llama_new_context_with_model: n_batch = 512
109
+ llama_new_context_with_model: n_ubatch = 128
110
+ llama_new_context_with_model: flash_attn = 0
111
+ llama_new_context_with_model: freq_base = 10000.0
112
+ llama_new_context_with_model: freq_scale = 1
113
+ ggml_metal_init: allocating
114
+ ggml_metal_init: found device: Apple M3 Max
115
+ ggml_metal_init: picking default device: Apple M3 Max
116
+ ggml_metal_init: using embedded metal library
117
+ ggml_metal_init: GPU name: Apple M3 Max
118
+ ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
119
+ ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
120
+ ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
121
+ ggml_metal_init: simdgroup reduction support = true
122
+ ggml_metal_init: simdgroup matrix mul. support = true
123
+ ggml_metal_init: hasUnifiedMemory = true
124
+ ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
125
+ llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
126
+ llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
127
+ llama_new_context_with_model: CPU output buffer size = 0.98 MiB
128
+ llama_new_context_with_model: Metal compute buffer size = 72.00 MiB
129
+ llama_new_context_with_model: CPU compute buffer size = 125.00 MiB
130
+ llama_new_context_with_model: graph nodes = 774
131
+ llama_new_context_with_model: graph splits = 3
132
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
133
+
134
+ system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
135
+ perplexity: tokenizing the input ..
136
+ perplexity: tokenization took 2741.95 ms
137
+ perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1
138
+ perplexity: 10.33 seconds per pass - ETA 23.05 minutes
139
+ [1]18.3751,[2]18.7063,[3]16.8806,[4]16.5903,[5]15.8444,[6]15.3400,[7]16.2943,[8]15.7614,[9]15.4661,[10]14.7455,[11]15.4058,[12]15.4707,[13]16.6022,[14]16.9078,[15]16.8926,[16]17.4456,[17]17.7709,[18]17.6703,[19]17.6898,[20]18.0172,[21]18.0413,[22]15.9789,[23]16.1688,[24]15.7649,[25]15.2233,[26]14.7550,[27]14.5496,[28]14.3645,[29]14.3079,[30]14.0839,[31]14.3321,[32]14.4502,[33]14.9338,[34]15.2396,[35]15.5478,[36]15.2922,[37]15.2753,[38]15.3457,[39]15.1808,[40]15.2087,[41]15.1848,[42]14.9793,[43]14.9167,[44]15.0906,[45]15.3037,[46]15.1467,[47]15.4100,[48]15.5334,[49]15.8348,[50]16.1429,[51]16.1849,[52]16.4173,[53]16.7558,[54]17.0960,[55]17.2191,[56]17.0438,[57]16.9502,[58]16.6601,[59]16.5426,[60]16.3405,[61]16.3897,[62]16.5398,[63]16.7419,[64]16.8083,[65]16.8394,[66]17.0364,[67]17.0094,[68]16.8909,[69]16.7384,[70]16.6228,[71]16.6213,[72]16.5604,[73]16.5666,[74]16.5139,[75]16.5047,[76]16.4420,[77]16.5047,[78]16.5027,[79]16.5087,[80]16.5418,[81]16.2233,[82]16.1985,[83]16.0625,[84]16.0991,[85]16.1511,[86]16.3592,[87]16.3892,[88]16.5549,[89]16.6120,[90]16.7460,[91]16.8066,[92]16.6348,[93]16.7024,[94]16.6877,[95]16.8355,[96]17.0351,[97]17.1187,[98]17.2222,[99]17.3725,[100]17.4156,[101]17.4451,[102]17.4032,[103]17.3732,[104]17.3571,[105]17.3399,[106]17.2031,[107]17.0649,[108]17.1284,[109]17.1473,[110]17.0546,[111]17.0157,[112]16.8633,[113]16.7129,[114]16.7039,[115]16.6748,[116]16.6818,[117]16.5711,[118]16.4363,[119]16.4301,[120]16.4939,[121]16.5105,[122]16.5380,[123]16.5775,[124]16.5954,[125]16.5914,[126]16.6190,[127]16.6449,[128]16.7290,[129]16.7188,[130]16.6922,[131]16.7515,[132]16.7253,[133]16.6661,[134]16.5067,
140
+ Final estimate: PPL = 16.5067 +/- 0.06740
141
+
142
+ llama_perf_context_print: load time = 1256.77 ms
143
+ llama_perf_context_print: prompt eval time = 1373342.06 ms / 1097728 tokens ( 1.25 ms per token, 799.31 tokens per second)
144
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
145
+ llama_perf_context_print: total time = 1414333.17 ms / 1097729 tokens
146
+ ggml_metal_free: deallocating
perplexity_Q3_K_M.txt ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
2
+ llama_model_loader: loaded meta data with 35 key-value pairs and 219 tensors from salamandra-2b-instruct_Q3_K_M.gguf (version GGUF V3 (latest))
3
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
4
+ llama_model_loader: - kv 0: general.architecture str = llama
5
+ llama_model_loader: - kv 1: general.type str = model
6
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
7
+ llama_model_loader: - kv 3: general.license str = apache-2.0
8
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
9
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
10
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
11
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
12
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
13
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
14
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
15
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
16
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
17
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
18
+ llama_model_loader: - kv 14: general.file_type u32 = 12
19
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
20
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
21
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
22
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
23
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
24
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
25
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
26
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
27
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
28
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
29
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
30
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
31
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
32
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
33
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
34
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
35
+ llama_model_loader: - kv 31: quantize.imatrix.file str = imatrix/oscar/imatrix.dat
36
+ llama_model_loader: - kv 32: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt
37
+ llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 168
38
+ llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 44176
39
+ llama_model_loader: - type f32: 49 tensors
40
+ llama_model_loader: - type q5_0: 23 tensors
41
+ llama_model_loader: - type q5_1: 1 tensors
42
+ llama_model_loader: - type q3_K: 97 tensors
43
+ llama_model_loader: - type q4_K: 46 tensors
44
+ llama_model_loader: - type q5_K: 2 tensors
45
+ llama_model_loader: - type bf16: 1 tensors
46
+ llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
47
+ llm_load_vocab: special tokens cache size = 104
48
+ llm_load_vocab: token to piece cache size = 1.8842 MB
49
+ llm_load_print_meta: format = GGUF V3 (latest)
50
+ llm_load_print_meta: arch = llama
51
+ llm_load_print_meta: vocab type = SPM
52
+ llm_load_print_meta: n_vocab = 256000
53
+ llm_load_print_meta: n_merges = 0
54
+ llm_load_print_meta: vocab_only = 0
55
+ llm_load_print_meta: n_ctx_train = 8192
56
+ llm_load_print_meta: n_embd = 2048
57
+ llm_load_print_meta: n_layer = 24
58
+ llm_load_print_meta: n_head = 16
59
+ llm_load_print_meta: n_head_kv = 16
60
+ llm_load_print_meta: n_rot = 128
61
+ llm_load_print_meta: n_swa = 0
62
+ llm_load_print_meta: n_embd_head_k = 128
63
+ llm_load_print_meta: n_embd_head_v = 128
64
+ llm_load_print_meta: n_gqa = 1
65
+ llm_load_print_meta: n_embd_k_gqa = 2048
66
+ llm_load_print_meta: n_embd_v_gqa = 2048
67
+ llm_load_print_meta: f_norm_eps = 0.0e+00
68
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
69
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
70
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
71
+ llm_load_print_meta: f_logit_scale = 0.0e+00
72
+ llm_load_print_meta: n_ff = 5440
73
+ llm_load_print_meta: n_expert = 0
74
+ llm_load_print_meta: n_expert_used = 0
75
+ llm_load_print_meta: causal attn = 1
76
+ llm_load_print_meta: pooling type = 0
77
+ llm_load_print_meta: rope type = 0
78
+ llm_load_print_meta: rope scaling = linear
79
+ llm_load_print_meta: freq_base_train = 10000.0
80
+ llm_load_print_meta: freq_scale_train = 1
81
+ llm_load_print_meta: n_ctx_orig_yarn = 8192
82
+ llm_load_print_meta: rope_finetuned = unknown
83
+ llm_load_print_meta: ssm_d_conv = 0
84
+ llm_load_print_meta: ssm_d_inner = 0
85
+ llm_load_print_meta: ssm_d_state = 0
86
+ llm_load_print_meta: ssm_dt_rank = 0
87
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
88
+ llm_load_print_meta: model type = ?B
89
+ llm_load_print_meta: model ftype = Q3_K - Medium
90
+ llm_load_print_meta: model params = 2.25 B
91
+ llm_load_print_meta: model size = 1.76 GiB (6.71 BPW)
92
+ llm_load_print_meta: general.name = n/a
93
+ llm_load_print_meta: BOS token = 1 '<s>'
94
+ llm_load_print_meta: EOS token = 2 '</s>'
95
+ llm_load_print_meta: UNK token = 0 '<unk>'
96
+ llm_load_print_meta: PAD token = 0 '<unk>'
97
+ llm_load_print_meta: LF token = 145 '<0x0A>'
98
+ llm_load_print_meta: EOT token = 5 '<|im_end|>'
99
+ llm_load_print_meta: EOG token = 2 '</s>'
100
+ llm_load_print_meta: EOG token = 5 '<|im_end|>'
101
+ llm_load_print_meta: max token length = 72
102
+ llm_load_tensors: ggml ctx size = 0.20 MiB
103
+ llm_load_tensors: offloading 24 repeating layers to GPU
104
+ llm_load_tensors: offloading non-repeating layers to GPU
105
+ llm_load_tensors: offloaded 25/25 layers to GPU
106
+ llm_load_tensors: Metal buffer size = 1801.85 MiB
107
+ llm_load_tensors: CPU buffer size = 214.84 MiB
108
+ ...................................
109
+ llama_new_context_with_model: n_ctx = 8192
110
+ llama_new_context_with_model: n_batch = 512
111
+ llama_new_context_with_model: n_ubatch = 128
112
+ llama_new_context_with_model: flash_attn = 0
113
+ llama_new_context_with_model: freq_base = 10000.0
114
+ llama_new_context_with_model: freq_scale = 1
115
+ ggml_metal_init: allocating
116
+ ggml_metal_init: found device: Apple M3 Max
117
+ ggml_metal_init: picking default device: Apple M3 Max
118
+ ggml_metal_init: using embedded metal library
119
+ ggml_metal_init: GPU name: Apple M3 Max
120
+ ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
121
+ ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
122
+ ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
123
+ ggml_metal_init: simdgroup reduction support = true
124
+ ggml_metal_init: simdgroup matrix mul. support = true
125
+ ggml_metal_init: hasUnifiedMemory = true
126
+ ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
127
+ llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
128
+ llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
129
+ llama_new_context_with_model: CPU output buffer size = 0.98 MiB
130
+ llama_new_context_with_model: Metal compute buffer size = 72.00 MiB
131
+ llama_new_context_with_model: CPU compute buffer size = 125.00 MiB
132
+ llama_new_context_with_model: graph nodes = 774
133
+ llama_new_context_with_model: graph splits = 3
134
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
135
+
136
+ system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
137
+ perplexity: tokenizing the input ..
138
+ perplexity: tokenization took 3245.03 ms
139
+ perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1
140
+ perplexity: 10.50 seconds per pass - ETA 23.45 minutes
141
+ [1]18.6436,[2]19.1149,[3]17.2307,[4]16.9491,[5]16.1724,[6]15.6363,[7]16.6124,[8]16.0910,[9]15.7972,[10]15.0672,[11]15.7426,[12]15.8047,[13]16.9639,[14]17.2806,[15]17.2621,[16]17.8314,[17]18.1578,[18]18.0537,[19]18.0718,[20]18.4048,[21]18.4235,[22]16.3393,[23]16.5358,[24]16.1249,[25]15.5668,[26]15.0885,[27]14.8773,[28]14.6864,[29]14.6278,[30]14.3999,[31]14.6618,[32]14.7695,[33]15.2614,[34]15.5712,[35]15.8861,[36]15.6201,[37]15.6016,[38]15.6714,[39]15.5003,[40]15.5259,[41]15.5006,[42]15.2864,[43]15.2186,[44]15.3937,[45]15.6112,[46]15.4493,[47]15.7212,[48]15.8468,[49]16.1577,[50]16.4769,[51]16.5221,[52]16.7616,[53]17.1090,[54]17.4590,[55]17.5842,[56]17.4052,[57]17.3113,[58]17.0118,[59]16.8908,[60]16.6834,[61]16.7317,[62]16.8849,[63]17.0935,[64]17.1618,[65]17.1949,[66]17.3988,[67]17.3709,[68]17.2497,[69]17.0926,[70]16.9750,[71]16.9734,[72]16.9132,[73]16.9217,[74]16.8675,[75]16.8623,[76]16.8000,[77]16.8626,[78]16.8608,[79]16.8673,[80]16.9007,[81]16.5635,[82]16.5366,[83]16.3972,[84]16.4370,[85]16.4925,[86]16.7065,[87]16.7367,[88]16.9057,[89]16.9635,[90]17.1000,[91]17.1627,[92]16.9849,[93]17.0537,[94]17.0377,[95]17.1891,[96]17.3957,[97]17.4828,[98]17.5903,[99]17.7496,[100]17.7934,[101]17.8236,[102]17.7789,[103]17.7470,[104]17.7305,[105]17.7120,[106]17.5711,[107]17.4287,[108]17.4930,[109]17.5125,[110]17.4178,[111]17.3773,[112]17.2224,[113]17.0680,[114]17.0578,[115]17.0285,[116]17.0352,[117]16.9202,[118]16.7823,[119]16.7747,[120]16.8409,[121]16.8578,[122]16.8858,[123]16.9270,[124]16.9460,[125]16.9417,[126]16.9712,[127]16.9982,[128]17.0843,[129]17.0735,[130]17.0460,[131]17.1078,[132]17.0812,[133]17.0198,[134]16.8567,
142
+ Final estimate: PPL = 16.8567 +/- 0.06889
143
+
144
+ llama_perf_context_print: load time = 1230.31 ms
145
+ llama_perf_context_print: prompt eval time = 1383629.65 ms / 1097728 tokens ( 1.26 ms per token, 793.37 tokens per second)
146
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
147
+ llama_perf_context_print: total time = 1423701.91 ms / 1097729 tokens
148
+ ggml_metal_free: deallocating
perplexity_Q4_K_M.txt ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
2
+ llama_model_loader: loaded meta data with 35 key-value pairs and 219 tensors from salamandra-2b-instruct_Q4_K_M.gguf (version GGUF V3 (latest))
3
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
4
+ llama_model_loader: - kv 0: general.architecture str = llama
5
+ llama_model_loader: - kv 1: general.type str = model
6
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
7
+ llama_model_loader: - kv 3: general.license str = apache-2.0
8
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
9
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
10
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
11
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
12
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
13
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
14
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
15
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
16
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
17
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
18
+ llama_model_loader: - kv 14: general.file_type u32 = 15
19
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
20
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
21
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
22
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
23
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
24
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
25
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
26
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
27
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
28
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
29
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
30
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
31
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
32
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
33
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
34
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
35
+ llama_model_loader: - kv 31: quantize.imatrix.file str = imatrix/oscar/imatrix.dat
36
+ llama_model_loader: - kv 32: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt
37
+ llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 168
38
+ llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 44176
39
+ llama_model_loader: - type f32: 49 tensors
40
+ llama_model_loader: - type q5_0: 12 tensors
41
+ llama_model_loader: - type q8_0: 12 tensors
42
+ llama_model_loader: - type q4_K: 133 tensors
43
+ llama_model_loader: - type q6_K: 12 tensors
44
+ llama_model_loader: - type bf16: 1 tensors
45
+ llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
46
+ llm_load_vocab: special tokens cache size = 104
47
+ llm_load_vocab: token to piece cache size = 1.8842 MB
48
+ llm_load_print_meta: format = GGUF V3 (latest)
49
+ llm_load_print_meta: arch = llama
50
+ llm_load_print_meta: vocab type = SPM
51
+ llm_load_print_meta: n_vocab = 256000
52
+ llm_load_print_meta: n_merges = 0
53
+ llm_load_print_meta: vocab_only = 0
54
+ llm_load_print_meta: n_ctx_train = 8192
55
+ llm_load_print_meta: n_embd = 2048
56
+ llm_load_print_meta: n_layer = 24
57
+ llm_load_print_meta: n_head = 16
58
+ llm_load_print_meta: n_head_kv = 16
59
+ llm_load_print_meta: n_rot = 128
60
+ llm_load_print_meta: n_swa = 0
61
+ llm_load_print_meta: n_embd_head_k = 128
62
+ llm_load_print_meta: n_embd_head_v = 128
63
+ llm_load_print_meta: n_gqa = 1
64
+ llm_load_print_meta: n_embd_k_gqa = 2048
65
+ llm_load_print_meta: n_embd_v_gqa = 2048
66
+ llm_load_print_meta: f_norm_eps = 0.0e+00
67
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
68
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
69
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
70
+ llm_load_print_meta: f_logit_scale = 0.0e+00
71
+ llm_load_print_meta: n_ff = 5440
72
+ llm_load_print_meta: n_expert = 0
73
+ llm_load_print_meta: n_expert_used = 0
74
+ llm_load_print_meta: causal attn = 1
75
+ llm_load_print_meta: pooling type = 0
76
+ llm_load_print_meta: rope type = 0
77
+ llm_load_print_meta: rope scaling = linear
78
+ llm_load_print_meta: freq_base_train = 10000.0
79
+ llm_load_print_meta: freq_scale_train = 1
80
+ llm_load_print_meta: n_ctx_orig_yarn = 8192
81
+ llm_load_print_meta: rope_finetuned = unknown
82
+ llm_load_print_meta: ssm_d_conv = 0
83
+ llm_load_print_meta: ssm_d_inner = 0
84
+ llm_load_print_meta: ssm_d_state = 0
85
+ llm_load_print_meta: ssm_dt_rank = 0
86
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
87
+ llm_load_print_meta: model type = ?B
88
+ llm_load_print_meta: model ftype = Q4_K - Medium
89
+ llm_load_print_meta: model params = 2.25 B
90
+ llm_load_print_meta: model size = 1.97 GiB (7.52 BPW)
91
+ llm_load_print_meta: general.name = n/a
92
+ llm_load_print_meta: BOS token = 1 '<s>'
93
+ llm_load_print_meta: EOS token = 2 '</s>'
94
+ llm_load_print_meta: UNK token = 0 '<unk>'
95
+ llm_load_print_meta: PAD token = 0 '<unk>'
96
+ llm_load_print_meta: LF token = 145 '<0x0A>'
97
+ llm_load_print_meta: EOT token = 5 '<|im_end|>'
98
+ llm_load_print_meta: EOG token = 2 '</s>'
99
+ llm_load_print_meta: EOG token = 5 '<|im_end|>'
100
+ llm_load_print_meta: max token length = 72
101
+ llm_load_tensors: ggml ctx size = 0.20 MiB
102
+ llm_load_tensors: offloading 24 repeating layers to GPU
103
+ llm_load_tensors: offloading non-repeating layers to GPU
104
+ llm_load_tensors: offloaded 25/25 layers to GPU
105
+ llm_load_tensors: Metal buffer size = 2020.02 MiB
106
+ llm_load_tensors: CPU buffer size = 281.25 MiB
107
+ .......................................
108
+ llama_new_context_with_model: n_ctx = 8192
109
+ llama_new_context_with_model: n_batch = 512
110
+ llama_new_context_with_model: n_ubatch = 128
111
+ llama_new_context_with_model: flash_attn = 0
112
+ llama_new_context_with_model: freq_base = 10000.0
113
+ llama_new_context_with_model: freq_scale = 1
114
+ ggml_metal_init: allocating
115
+ ggml_metal_init: found device: Apple M3 Max
116
+ ggml_metal_init: picking default device: Apple M3 Max
117
+ ggml_metal_init: using embedded metal library
118
+ ggml_metal_init: GPU name: Apple M3 Max
119
+ ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
120
+ ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
121
+ ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
122
+ ggml_metal_init: simdgroup reduction support = true
123
+ ggml_metal_init: simdgroup matrix mul. support = true
124
+ ggml_metal_init: hasUnifiedMemory = true
125
+ ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
126
+ llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
127
+ llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
128
+ llama_new_context_with_model: CPU output buffer size = 0.98 MiB
129
+ llama_new_context_with_model: Metal compute buffer size = 72.00 MiB
130
+ llama_new_context_with_model: CPU compute buffer size = 125.00 MiB
131
+ llama_new_context_with_model: graph nodes = 774
132
+ llama_new_context_with_model: graph splits = 3
133
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
134
+
135
+ system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
136
+ perplexity: tokenizing the input ..
137
+ perplexity: tokenization took 2927.51 ms
138
+ perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1
139
+ perplexity: 9.93 seconds per pass - ETA 22.18 minutes
140
+ [1]17.5089,[2]17.8400,[3]16.1878,[4]15.9924,[5]15.2780,[6]14.8035,[7]15.6954,[8]15.1917,[9]14.9173,[10]14.2094,[11]14.8451,[12]14.9078,[13]15.9738,[14]16.2514,[15]16.2354,[16]16.7807,[17]17.0773,[18]16.9739,[19]17.0181,[20]17.3306,[21]17.3653,[22]15.3341,[23]15.5152,[24]15.1377,[25]14.6189,[26]14.1756,[27]13.9808,[28]13.8060,[29]13.7565,[30]13.5495,[31]13.7882,[32]13.9001,[33]14.3769,[34]14.6790,[35]14.9835,[36]14.7423,[37]14.7272,[38]14.8019,[39]14.6457,[40]14.6778,[41]14.6509,[42]14.4603,[43]14.4040,[44]14.5677,[45]14.7754,[46]14.6276,[47]14.8679,[48]14.9861,[49]15.2696,[50]15.5547,[51]15.5905,[52]15.8069,[53]16.1288,[54]16.4542,[55]16.5662,[56]16.3988,[57]16.3056,[58]16.0291,[59]15.9206,[60]15.7269,[61]15.7765,[62]15.9151,[63]16.1024,[64]16.1644,[65]16.1921,[66]16.3829,[67]16.3565,[68]16.2458,[69]16.1030,[70]15.9968,[71]15.9918,[72]15.9369,[73]15.9483,[74]15.8911,[75]15.8734,[76]15.8125,[77]15.8696,[78]15.8679,[79]15.8773,[80]15.9141,[81]15.6136,[82]15.5899,[83]15.4594,[84]15.4937,[85]15.5439,[86]15.7399,[87]15.7652,[88]15.9203,[89]15.9731,[90]16.0986,[91]16.1577,[92]15.9921,[93]16.0569,[94]16.0429,[95]16.1803,[96]16.3732,[97]16.4507,[98]16.5492,[99]16.6969,[100]16.7378,[101]16.7648,[102]16.7253,[103]16.6971,[104]16.6812,[105]16.6661,[106]16.5354,[107]16.4054,[108]16.4670,[109]16.4850,[110]16.3960,[111]16.3583,[112]16.2095,[113]16.0675,[114]16.0616,[115]16.0352,[116]16.0433,[117]15.9357,[118]15.8047,[119]15.7972,[120]15.8571,[121]15.8720,[122]15.8945,[123]15.9307,[124]15.9490,[125]15.9434,[126]15.9677,[127]15.9922,[128]16.0722,[129]16.0628,[130]16.0396,[131]16.0973,[132]16.0732,[133]16.0167,[134]15.8651,
141
+ Final estimate: PPL = 15.8651 +/- 0.06475
142
+
143
+ llama_perf_context_print: load time = 1296.13 ms
144
+ llama_perf_context_print: prompt eval time = 1297338.40 ms / 1097728 tokens ( 1.18 ms per token, 846.14 tokens per second)
145
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
146
+ llama_perf_context_print: total time = 1338884.29 ms / 1097729 tokens
147
+ ggml_metal_free: deallocating
perplexity_Q4_K_S.txt ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
2
+ llama_model_loader: loaded meta data with 35 key-value pairs and 219 tensors from salamandra-2b-instruct_Q4_K_S.gguf (version GGUF V3 (latest))
3
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
4
+ llama_model_loader: - kv 0: general.architecture str = llama
5
+ llama_model_loader: - kv 1: general.type str = model
6
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
7
+ llama_model_loader: - kv 3: general.license str = apache-2.0
8
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
9
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
10
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
11
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
12
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
13
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
14
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
15
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
16
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
17
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
18
+ llama_model_loader: - kv 14: general.file_type u32 = 14
19
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
20
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
21
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
22
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
23
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
24
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
25
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
26
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
27
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
28
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
29
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
30
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
31
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
32
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
33
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
34
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
35
+ llama_model_loader: - kv 31: quantize.imatrix.file str = imatrix/oscar/imatrix.dat
36
+ llama_model_loader: - kv 32: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt
37
+ llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 168
38
+ llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 44176
39
+ llama_model_loader: - type f32: 49 tensors
40
+ llama_model_loader: - type q5_0: 21 tensors
41
+ llama_model_loader: - type q5_1: 3 tensors
42
+ llama_model_loader: - type q4_K: 141 tensors
43
+ llama_model_loader: - type q5_K: 4 tensors
44
+ llama_model_loader: - type bf16: 1 tensors
45
+ llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
46
+ llm_load_vocab: special tokens cache size = 104
47
+ llm_load_vocab: token to piece cache size = 1.8842 MB
48
+ llm_load_print_meta: format = GGUF V3 (latest)
49
+ llm_load_print_meta: arch = llama
50
+ llm_load_print_meta: vocab type = SPM
51
+ llm_load_print_meta: n_vocab = 256000
52
+ llm_load_print_meta: n_merges = 0
53
+ llm_load_print_meta: vocab_only = 0
54
+ llm_load_print_meta: n_ctx_train = 8192
55
+ llm_load_print_meta: n_embd = 2048
56
+ llm_load_print_meta: n_layer = 24
57
+ llm_load_print_meta: n_head = 16
58
+ llm_load_print_meta: n_head_kv = 16
59
+ llm_load_print_meta: n_rot = 128
60
+ llm_load_print_meta: n_swa = 0
61
+ llm_load_print_meta: n_embd_head_k = 128
62
+ llm_load_print_meta: n_embd_head_v = 128
63
+ llm_load_print_meta: n_gqa = 1
64
+ llm_load_print_meta: n_embd_k_gqa = 2048
65
+ llm_load_print_meta: n_embd_v_gqa = 2048
66
+ llm_load_print_meta: f_norm_eps = 0.0e+00
67
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
68
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
69
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
70
+ llm_load_print_meta: f_logit_scale = 0.0e+00
71
+ llm_load_print_meta: n_ff = 5440
72
+ llm_load_print_meta: n_expert = 0
73
+ llm_load_print_meta: n_expert_used = 0
74
+ llm_load_print_meta: causal attn = 1
75
+ llm_load_print_meta: pooling type = 0
76
+ llm_load_print_meta: rope type = 0
77
+ llm_load_print_meta: rope scaling = linear
78
+ llm_load_print_meta: freq_base_train = 10000.0
79
+ llm_load_print_meta: freq_scale_train = 1
80
+ llm_load_print_meta: n_ctx_orig_yarn = 8192
81
+ llm_load_print_meta: rope_finetuned = unknown
82
+ llm_load_print_meta: ssm_d_conv = 0
83
+ llm_load_print_meta: ssm_d_inner = 0
84
+ llm_load_print_meta: ssm_d_state = 0
85
+ llm_load_print_meta: ssm_dt_rank = 0
86
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
87
+ llm_load_print_meta: model type = ?B
88
+ llm_load_print_meta: model ftype = Q4_K - Small
89
+ llm_load_print_meta: model params = 2.25 B
90
+ llm_load_print_meta: model size = 1.92 GiB (7.31 BPW)
91
+ llm_load_print_meta: general.name = n/a
92
+ llm_load_print_meta: BOS token = 1 '<s>'
93
+ llm_load_print_meta: EOS token = 2 '</s>'
94
+ llm_load_print_meta: UNK token = 0 '<unk>'
95
+ llm_load_print_meta: PAD token = 0 '<unk>'
96
+ llm_load_print_meta: LF token = 145 '<0x0A>'
97
+ llm_load_print_meta: EOT token = 5 '<|im_end|>'
98
+ llm_load_print_meta: EOG token = 2 '</s>'
99
+ llm_load_print_meta: EOG token = 5 '<|im_end|>'
100
+ llm_load_print_meta: max token length = 72
101
+ llm_load_tensors: ggml ctx size = 0.20 MiB
102
+ llm_load_tensors: offloading 24 repeating layers to GPU
103
+ llm_load_tensors: offloading non-repeating layers to GPU
104
+ llm_load_tensors: offloaded 25/25 layers to GPU
105
+ llm_load_tensors: Metal buffer size = 1963.82 MiB
106
+ llm_load_tensors: CPU buffer size = 281.25 MiB
107
+ .....................................
108
+ llama_new_context_with_model: n_ctx = 8192
109
+ llama_new_context_with_model: n_batch = 512
110
+ llama_new_context_with_model: n_ubatch = 128
111
+ llama_new_context_with_model: flash_attn = 0
112
+ llama_new_context_with_model: freq_base = 10000.0
113
+ llama_new_context_with_model: freq_scale = 1
114
+ ggml_metal_init: allocating
115
+ ggml_metal_init: found device: Apple M3 Max
116
+ ggml_metal_init: picking default device: Apple M3 Max
117
+ ggml_metal_init: using embedded metal library
118
+ ggml_metal_init: GPU name: Apple M3 Max
119
+ ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
120
+ ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
121
+ ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
122
+ ggml_metal_init: simdgroup reduction support = true
123
+ ggml_metal_init: simdgroup matrix mul. support = true
124
+ ggml_metal_init: hasUnifiedMemory = true
125
+ ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
126
+ llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
127
+ llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
128
+ llama_new_context_with_model: CPU output buffer size = 0.98 MiB
129
+ llama_new_context_with_model: Metal compute buffer size = 72.00 MiB
130
+ llama_new_context_with_model: CPU compute buffer size = 125.00 MiB
131
+ llama_new_context_with_model: graph nodes = 774
132
+ llama_new_context_with_model: graph splits = 3
133
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
134
+
135
+ system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
136
+ perplexity: tokenizing the input ..
137
+ perplexity: tokenization took 3213.6 ms
138
+ perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1
139
+ perplexity: 10.52 seconds per pass - ETA 23.48 minutes
140
+ [1]17.5477,[2]17.9221,[3]16.2638,[4]16.0589,[5]15.3365,[6]14.8584,[7]15.7493,[8]15.2416,[9]14.9662,[10]14.2574,[11]14.8994,[12]14.9625,[13]16.0414,[14]16.3210,[15]16.3080,[16]16.8530,[17]17.1502,[18]17.0427,[19]17.0853,[20]17.4004,[21]17.4331,[22]15.3983,[23]15.5808,[24]15.2009,[25]14.6792,[26]14.2320,[27]14.0352,[28]13.8592,[29]13.8091,[30]13.6025,[31]13.8428,[32]13.9538,[33]14.4326,[34]14.7368,[35]15.0448,[36]14.8038,[37]14.7882,[38]14.8626,[39]14.7051,[40]14.7370,[41]14.7107,[42]14.5182,[43]14.4627,[44]14.6275,[45]14.8360,[46]14.6871,[47]14.9297,[48]15.0471,[49]15.3325,[50]15.6184,[51]15.6550,[52]15.8727,[53]16.1975,[54]16.5253,[55]16.6375,[56]16.4689,[57]16.3747,[58]16.0970,[59]15.9877,[60]15.7936,[61]15.8436,[62]15.9836,[63]16.1730,[64]16.2348,[65]16.2632,[66]16.4551,[67]16.4280,[68]16.3158,[69]16.1721,[70]16.0645,[71]16.0588,[72]16.0047,[73]16.0157,[74]15.9581,[75]15.9404,[76]15.8797,[77]15.9372,[78]15.9354,[79]15.9450,[80]15.9817,[81]15.6790,[82]15.6550,[83]15.5241,[84]15.5590,[85]15.6100,[86]15.8073,[87]15.8330,[88]15.9890,[89]16.0422,[90]16.1685,[91]16.2271,[92]16.0607,[93]16.1260,[94]16.1120,[95]16.2495,[96]16.4435,[97]16.5212,[98]16.6202,[99]16.7698,[100]16.8107,[101]16.8379,[102]16.7980,[103]16.7689,[104]16.7532,[105]16.7382,[106]16.6067,[107]16.4755,[108]16.5369,[109]16.5549,[110]16.4654,[111]16.4273,[112]16.2783,[113]16.1354,[114]16.1296,[115]16.1034,[116]16.1114,[117]16.0036,[118]15.8722,[119]15.8647,[120]15.9249,[121]15.9399,[122]15.9622,[123]15.9989,[124]16.0173,[125]16.0118,[126]16.0367,[127]16.0617,[128]16.1422,[129]16.1329,[130]16.1099,[131]16.1679,[132]16.1440,[133]16.0872,[134]15.9346,
141
+ Final estimate: PPL = 15.9346 +/- 0.06504
142
+
143
+ llama_perf_context_print: load time = 1326.96 ms
144
+ llama_perf_context_print: prompt eval time = 1377983.72 ms / 1097728 tokens ( 1.26 ms per token, 796.62 tokens per second)
145
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
146
+ llama_perf_context_print: total time = 1417581.05 ms / 1097729 tokens
147
+ ggml_metal_free: deallocating
perplexity_Q5_K_M.txt ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
2
+ llama_model_loader: loaded meta data with 35 key-value pairs and 219 tensors from salamandra-2b-instruct_Q5_K_M.gguf (version GGUF V3 (latest))
3
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
4
+ llama_model_loader: - kv 0: general.architecture str = llama
5
+ llama_model_loader: - kv 1: general.type str = model
6
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
7
+ llama_model_loader: - kv 3: general.license str = apache-2.0
8
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
9
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
10
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
11
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
12
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
13
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
14
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
15
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
16
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
17
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
18
+ llama_model_loader: - kv 14: general.file_type u32 = 17
19
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
20
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
21
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
22
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
23
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
24
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
25
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
26
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
27
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
28
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
29
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
30
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
31
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
32
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
33
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
34
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
35
+ llama_model_loader: - kv 31: quantize.imatrix.file str = imatrix/oscar/imatrix.dat
36
+ llama_model_loader: - kv 32: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt
37
+ llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 168
38
+ llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 44176
39
+ llama_model_loader: - type f32: 49 tensors
40
+ llama_model_loader: - type q5_1: 12 tensors
41
+ llama_model_loader: - type q8_0: 12 tensors
42
+ llama_model_loader: - type q5_K: 133 tensors
43
+ llama_model_loader: - type q6_K: 12 tensors
44
+ llama_model_loader: - type bf16: 1 tensors
45
+ llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
46
+ llm_load_vocab: special tokens cache size = 104
47
+ llm_load_vocab: token to piece cache size = 1.8842 MB
48
+ llm_load_print_meta: format = GGUF V3 (latest)
49
+ llm_load_print_meta: arch = llama
50
+ llm_load_print_meta: vocab type = SPM
51
+ llm_load_print_meta: n_vocab = 256000
52
+ llm_load_print_meta: n_merges = 0
53
+ llm_load_print_meta: vocab_only = 0
54
+ llm_load_print_meta: n_ctx_train = 8192
55
+ llm_load_print_meta: n_embd = 2048
56
+ llm_load_print_meta: n_layer = 24
57
+ llm_load_print_meta: n_head = 16
58
+ llm_load_print_meta: n_head_kv = 16
59
+ llm_load_print_meta: n_rot = 128
60
+ llm_load_print_meta: n_swa = 0
61
+ llm_load_print_meta: n_embd_head_k = 128
62
+ llm_load_print_meta: n_embd_head_v = 128
63
+ llm_load_print_meta: n_gqa = 1
64
+ llm_load_print_meta: n_embd_k_gqa = 2048
65
+ llm_load_print_meta: n_embd_v_gqa = 2048
66
+ llm_load_print_meta: f_norm_eps = 0.0e+00
67
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
68
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
69
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
70
+ llm_load_print_meta: f_logit_scale = 0.0e+00
71
+ llm_load_print_meta: n_ff = 5440
72
+ llm_load_print_meta: n_expert = 0
73
+ llm_load_print_meta: n_expert_used = 0
74
+ llm_load_print_meta: causal attn = 1
75
+ llm_load_print_meta: pooling type = 0
76
+ llm_load_print_meta: rope type = 0
77
+ llm_load_print_meta: rope scaling = linear
78
+ llm_load_print_meta: freq_base_train = 10000.0
79
+ llm_load_print_meta: freq_scale_train = 1
80
+ llm_load_print_meta: n_ctx_orig_yarn = 8192
81
+ llm_load_print_meta: rope_finetuned = unknown
82
+ llm_load_print_meta: ssm_d_conv = 0
83
+ llm_load_print_meta: ssm_d_inner = 0
84
+ llm_load_print_meta: ssm_d_state = 0
85
+ llm_load_print_meta: ssm_dt_rank = 0
86
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
87
+ llm_load_print_meta: model type = ?B
88
+ llm_load_print_meta: model ftype = Q5_K - Medium
89
+ llm_load_print_meta: model params = 2.25 B
90
+ llm_load_print_meta: model size = 2.14 GiB (8.18 BPW)
91
+ llm_load_print_meta: general.name = n/a
92
+ llm_load_print_meta: BOS token = 1 '<s>'
93
+ llm_load_print_meta: EOS token = 2 '</s>'
94
+ llm_load_print_meta: UNK token = 0 '<unk>'
95
+ llm_load_print_meta: PAD token = 0 '<unk>'
96
+ llm_load_print_meta: LF token = 145 '<0x0A>'
97
+ llm_load_print_meta: EOT token = 5 '<|im_end|>'
98
+ llm_load_print_meta: EOG token = 2 '</s>'
99
+ llm_load_print_meta: EOG token = 5 '<|im_end|>'
100
+ llm_load_print_meta: max token length = 72
101
+ llm_load_tensors: ggml ctx size = 0.20 MiB
102
+ llm_load_tensors: offloading 24 repeating layers to GPU
103
+ llm_load_tensors: offloading non-repeating layers to GPU
104
+ llm_load_tensors: offloaded 25/25 layers to GPU
105
+ llm_load_tensors: Metal buffer size = 2196.24 MiB
106
+ llm_load_tensors: CPU buffer size = 343.75 MiB
107
+ .........................................
108
+ llama_new_context_with_model: n_ctx = 8192
109
+ llama_new_context_with_model: n_batch = 512
110
+ llama_new_context_with_model: n_ubatch = 128
111
+ llama_new_context_with_model: flash_attn = 0
112
+ llama_new_context_with_model: freq_base = 10000.0
113
+ llama_new_context_with_model: freq_scale = 1
114
+ ggml_metal_init: allocating
115
+ ggml_metal_init: found device: Apple M3 Max
116
+ ggml_metal_init: picking default device: Apple M3 Max
117
+ ggml_metal_init: using embedded metal library
118
+ ggml_metal_init: GPU name: Apple M3 Max
119
+ ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
120
+ ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
121
+ ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
122
+ ggml_metal_init: simdgroup reduction support = true
123
+ ggml_metal_init: simdgroup matrix mul. support = true
124
+ ggml_metal_init: hasUnifiedMemory = true
125
+ ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
126
+ llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
127
+ llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
128
+ llama_new_context_with_model: CPU output buffer size = 0.98 MiB
129
+ llama_new_context_with_model: Metal compute buffer size = 72.00 MiB
130
+ llama_new_context_with_model: CPU compute buffer size = 125.00 MiB
131
+ llama_new_context_with_model: graph nodes = 774
132
+ llama_new_context_with_model: graph splits = 3
133
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
134
+
135
+ system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
136
+ perplexity: tokenizing the input ..
137
+ perplexity: tokenization took 2711.28 ms
138
+ perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1
139
+ perplexity: 10.39 seconds per pass - ETA 23.20 minutes
140
+ [1]17.2226,[2]17.3542,[3]15.7985,[4]15.6000,[5]14.9544,[6]14.5082,[7]15.3873,[8]14.8841,[9]14.6010,[10]13.8990,[11]14.5178,[12]14.5725,[13]15.6016,[14]15.8676,[15]15.8517,[16]16.3829,[17]16.6752,[18]16.5774,[19]16.6203,[20]16.9249,[21]16.9643,[22]14.9799,[23]15.1548,[24]14.7848,[25]14.2787,[26]13.8419,[27]13.6523,[28]13.4800,[29]13.4302,[30]13.2275,[31]13.4596,[32]13.5639,[33]14.0287,[34]14.3274,[35]14.6264,[36]14.3958,[37]14.3842,[38]14.4594,[39]14.3099,[40]14.3445,[41]14.3211,[42]14.1361,[43]14.0849,[44]14.2477,[45]14.4500,[46]14.3055,[47]14.5382,[48]14.6503,[49]14.9219,[50]15.1939,[51]15.2276,[52]15.4355,[53]15.7492,[54]16.0619,[55]16.1694,[56]16.0056,[57]15.9105,[58]15.6455,[59]15.5409,[60]15.3517,[61]15.4022,[62]15.5348,[63]15.7174,[64]15.7781,[65]15.8056,[66]15.9889,[67]15.9635,[68]15.8533,[69]15.7140,[70]15.6085,[71]15.6036,[72]15.5481,[73]15.5581,[74]15.5016,[75]15.4753,[76]15.4155,[77]15.4734,[78]15.4727,[79]15.4807,[80]15.5167,[81]15.2324,[82]15.2101,[83]15.0829,[84]15.1149,[85]15.1614,[86]15.3514,[87]15.3756,[88]15.5277,[89]15.5809,[90]15.7045,[91]15.7595,[92]15.6003,[93]15.6652,[94]15.6532,[95]15.7871,[96]15.9751,[97]16.0495,[98]16.1437,[99]16.2805,[100]16.3214,[101]16.3474,[102]16.3094,[103]16.2810,[104]16.2648,[105]16.2514,[106]16.1249,[107]15.9989,[108]16.0583,[109]16.0749,[110]15.9885,[111]15.9532,[112]15.8075,[113]15.6698,[114]15.6647,[115]15.6397,[116]15.6484,[117]15.5437,[118]15.4168,[119]15.4099,[120]15.4687,[121]15.4837,[122]15.5060,[123]15.5413,[124]15.5575,[125]15.5520,[126]15.5771,[127]15.6011,[128]15.6786,[129]15.6687,[130]15.6461,[131]15.7018,[132]15.6773,[133]15.6226,[134]15.4746,
141
+ Final estimate: PPL = 15.4746 +/- 0.06294
142
+
143
+ llama_perf_context_print: load time = 1424.89 ms
144
+ llama_perf_context_print: prompt eval time = 1380468.79 ms / 1097728 tokens ( 1.26 ms per token, 795.18 tokens per second)
145
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
146
+ llama_perf_context_print: total time = 1421207.09 ms / 1097729 tokens
147
+ ggml_metal_free: deallocating
perplexity_Q5_K_S.txt ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
2
+ llama_model_loader: loaded meta data with 35 key-value pairs and 219 tensors from salamandra-2b-instruct_Q5_K_S.gguf (version GGUF V3 (latest))
3
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
4
+ llama_model_loader: - kv 0: general.architecture str = llama
5
+ llama_model_loader: - kv 1: general.type str = model
6
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
7
+ llama_model_loader: - kv 3: general.license str = apache-2.0
8
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
9
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
10
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
11
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
12
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
13
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
14
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
15
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
16
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
17
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
18
+ llama_model_loader: - kv 14: general.file_type u32 = 16
19
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
20
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
21
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
22
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
23
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
24
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
25
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
26
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
27
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
28
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
29
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
30
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
31
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
32
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
33
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
34
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
35
+ llama_model_loader: - kv 31: quantize.imatrix.file str = imatrix/oscar/imatrix.dat
36
+ llama_model_loader: - kv 32: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt
37
+ llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 168
38
+ llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 44176
39
+ llama_model_loader: - type f32: 49 tensors
40
+ llama_model_loader: - type q5_1: 24 tensors
41
+ llama_model_loader: - type q5_K: 145 tensors
42
+ llama_model_loader: - type bf16: 1 tensors
43
+ llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
44
+ llm_load_vocab: special tokens cache size = 104
45
+ llm_load_vocab: token to piece cache size = 1.8842 MB
46
+ llm_load_print_meta: format = GGUF V3 (latest)
47
+ llm_load_print_meta: arch = llama
48
+ llm_load_print_meta: vocab type = SPM
49
+ llm_load_print_meta: n_vocab = 256000
50
+ llm_load_print_meta: n_merges = 0
51
+ llm_load_print_meta: vocab_only = 0
52
+ llm_load_print_meta: n_ctx_train = 8192
53
+ llm_load_print_meta: n_embd = 2048
54
+ llm_load_print_meta: n_layer = 24
55
+ llm_load_print_meta: n_head = 16
56
+ llm_load_print_meta: n_head_kv = 16
57
+ llm_load_print_meta: n_rot = 128
58
+ llm_load_print_meta: n_swa = 0
59
+ llm_load_print_meta: n_embd_head_k = 128
60
+ llm_load_print_meta: n_embd_head_v = 128
61
+ llm_load_print_meta: n_gqa = 1
62
+ llm_load_print_meta: n_embd_k_gqa = 2048
63
+ llm_load_print_meta: n_embd_v_gqa = 2048
64
+ llm_load_print_meta: f_norm_eps = 0.0e+00
65
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
66
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
67
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
68
+ llm_load_print_meta: f_logit_scale = 0.0e+00
69
+ llm_load_print_meta: n_ff = 5440
70
+ llm_load_print_meta: n_expert = 0
71
+ llm_load_print_meta: n_expert_used = 0
72
+ llm_load_print_meta: causal attn = 1
73
+ llm_load_print_meta: pooling type = 0
74
+ llm_load_print_meta: rope type = 0
75
+ llm_load_print_meta: rope scaling = linear
76
+ llm_load_print_meta: freq_base_train = 10000.0
77
+ llm_load_print_meta: freq_scale_train = 1
78
+ llm_load_print_meta: n_ctx_orig_yarn = 8192
79
+ llm_load_print_meta: rope_finetuned = unknown
80
+ llm_load_print_meta: ssm_d_conv = 0
81
+ llm_load_print_meta: ssm_d_inner = 0
82
+ llm_load_print_meta: ssm_d_state = 0
83
+ llm_load_print_meta: ssm_dt_rank = 0
84
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
85
+ llm_load_print_meta: model type = ?B
86
+ llm_load_print_meta: model ftype = Q5_K - Small
87
+ llm_load_print_meta: model params = 2.25 B
88
+ llm_load_print_meta: model size = 2.10 GiB (8.00 BPW)
89
+ llm_load_print_meta: general.name = n/a
90
+ llm_load_print_meta: BOS token = 1 '<s>'
91
+ llm_load_print_meta: EOS token = 2 '</s>'
92
+ llm_load_print_meta: UNK token = 0 '<unk>'
93
+ llm_load_print_meta: PAD token = 0 '<unk>'
94
+ llm_load_print_meta: LF token = 145 '<0x0A>'
95
+ llm_load_print_meta: EOT token = 5 '<|im_end|>'
96
+ llm_load_print_meta: EOG token = 2 '</s>'
97
+ llm_load_print_meta: EOG token = 5 '<|im_end|>'
98
+ llm_load_print_meta: max token length = 72
99
+ llm_load_tensors: ggml ctx size = 0.20 MiB
100
+ llm_load_tensors: offloading 24 repeating layers to GPU
101
+ llm_load_tensors: offloading non-repeating layers to GPU
102
+ llm_load_tensors: offloaded 25/25 layers to GPU
103
+ llm_load_tensors: Metal buffer size = 2150.02 MiB
104
+ llm_load_tensors: CPU buffer size = 343.75 MiB
105
+ ........................................
106
+ llama_new_context_with_model: n_ctx = 8192
107
+ llama_new_context_with_model: n_batch = 512
108
+ llama_new_context_with_model: n_ubatch = 128
109
+ llama_new_context_with_model: flash_attn = 0
110
+ llama_new_context_with_model: freq_base = 10000.0
111
+ llama_new_context_with_model: freq_scale = 1
112
+ ggml_metal_init: allocating
113
+ ggml_metal_init: found device: Apple M3 Max
114
+ ggml_metal_init: picking default device: Apple M3 Max
115
+ ggml_metal_init: using embedded metal library
116
+ ggml_metal_init: GPU name: Apple M3 Max
117
+ ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
118
+ ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
119
+ ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
120
+ ggml_metal_init: simdgroup reduction support = true
121
+ ggml_metal_init: simdgroup matrix mul. support = true
122
+ ggml_metal_init: hasUnifiedMemory = true
123
+ ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
124
+ llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
125
+ llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
126
+ llama_new_context_with_model: CPU output buffer size = 0.98 MiB
127
+ llama_new_context_with_model: Metal compute buffer size = 72.00 MiB
128
+ llama_new_context_with_model: CPU compute buffer size = 125.00 MiB
129
+ llama_new_context_with_model: graph nodes = 774
130
+ llama_new_context_with_model: graph splits = 3
131
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
132
+
133
+ system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
134
+ perplexity: tokenizing the input ..
135
+ perplexity: tokenization took 2882.91 ms
136
+ perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1
137
+ perplexity: 10.23 seconds per pass - ETA 22.83 minutes
138
+ [1]17.2785,[2]17.3956,[3]15.8182,[4]15.6253,[5]14.9784,[6]14.5289,[7]15.4024,[8]14.8970,[9]14.6110,[10]13.9083,[11]14.5294,[12]14.5847,[13]15.6201,[14]15.8849,[15]15.8689,[16]16.3995,[17]16.6897,[18]16.5927,[19]16.6344,[20]16.9387,[21]16.9762,[22]14.9908,[23]15.1671,[24]14.7960,[25]14.2906,[26]13.8526,[27]13.6621,[28]13.4899,[29]13.4404,[30]13.2374,[31]13.4688,[32]13.5754,[33]14.0416,[34]14.3413,[35]14.6406,[36]14.4104,[37]14.3984,[38]14.4738,[39]14.3237,[40]14.3586,[41]14.3349,[42]14.1493,[43]14.0986,[44]14.2616,[45]14.4640,[46]14.3193,[47]14.5523,[48]14.6647,[49]14.9375,[50]15.2097,[51]15.2433,[52]15.4516,[53]15.7659,[54]16.0790,[55]16.1869,[56]16.0226,[57]15.9270,[58]15.6618,[59]15.5568,[60]15.3672,[61]15.4177,[62]15.5506,[63]15.7337,[64]15.7943,[65]15.8222,[66]16.0057,[67]15.9803,[68]15.8701,[69]15.7304,[70]15.6239,[71]15.6188,[72]15.5632,[73]15.5726,[74]15.5157,[75]15.4888,[76]15.4294,[77]15.4869,[78]15.4861,[79]15.4939,[80]15.5303,[81]15.2465,[82]15.2241,[83]15.0971,[84]15.1296,[85]15.1765,[86]15.3665,[87]15.3904,[88]15.5424,[89]15.5955,[90]15.7196,[91]15.7749,[92]15.6150,[93]15.6800,[94]15.6679,[95]15.8016,[96]15.9901,[97]16.0644,[98]16.1586,[99]16.2961,[100]16.3372,[101]16.3631,[102]16.3251,[103]16.2967,[104]16.2805,[105]16.2670,[106]16.1406,[107]16.0144,[108]16.0742,[109]16.0908,[110]16.0044,[111]15.9691,[112]15.8230,[113]15.6850,[114]15.6798,[115]15.6547,[116]15.6632,[117]15.5585,[118]15.4314,[119]15.4247,[120]15.4835,[121]15.4987,[122]15.5208,[123]15.5565,[124]15.5727,[125]15.5673,[126]15.5925,[127]15.6164,[128]15.6942,[129]15.6844,[130]15.6618,[131]15.7177,[132]15.6932,[133]15.6385,[134]15.4901,
139
+ Final estimate: PPL = 15.4901 +/- 0.06304
140
+
141
+ llama_perf_context_print: load time = 1379.17 ms
142
+ llama_perf_context_print: prompt eval time = 1395400.59 ms / 1097728 tokens ( 1.27 ms per token, 786.68 tokens per second)
143
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
144
+ llama_perf_context_print: total time = 1436395.92 ms / 1097729 tokens
145
+ ggml_metal_free: deallocating
perplexity_Q6_K.txt ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
2
+ llama_model_loader: loaded meta data with 35 key-value pairs and 219 tensors from salamandra-2b-instruct_Q6_K.gguf (version GGUF V3 (latest))
3
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
4
+ llama_model_loader: - kv 0: general.architecture str = llama
5
+ llama_model_loader: - kv 1: general.type str = model
6
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
7
+ llama_model_loader: - kv 3: general.license str = apache-2.0
8
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
9
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
10
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
11
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
12
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
13
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
14
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
15
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
16
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
17
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
18
+ llama_model_loader: - kv 14: general.file_type u32 = 18
19
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
20
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
21
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
22
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
23
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
24
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
25
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
26
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
27
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
28
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
29
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
30
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
31
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
32
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
33
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
34
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
35
+ llama_model_loader: - kv 31: quantize.imatrix.file str = imatrix/oscar/imatrix.dat
36
+ llama_model_loader: - kv 32: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt
37
+ llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 168
38
+ llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 44176
39
+ llama_model_loader: - type f32: 49 tensors
40
+ llama_model_loader: - type q8_0: 24 tensors
41
+ llama_model_loader: - type q6_K: 145 tensors
42
+ llama_model_loader: - type bf16: 1 tensors
43
+ llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
44
+ llm_load_vocab: special tokens cache size = 104
45
+ llm_load_vocab: token to piece cache size = 1.8842 MB
46
+ llm_load_print_meta: format = GGUF V3 (latest)
47
+ llm_load_print_meta: arch = llama
48
+ llm_load_print_meta: vocab type = SPM
49
+ llm_load_print_meta: n_vocab = 256000
50
+ llm_load_print_meta: n_merges = 0
51
+ llm_load_print_meta: vocab_only = 0
52
+ llm_load_print_meta: n_ctx_train = 8192
53
+ llm_load_print_meta: n_embd = 2048
54
+ llm_load_print_meta: n_layer = 24
55
+ llm_load_print_meta: n_head = 16
56
+ llm_load_print_meta: n_head_kv = 16
57
+ llm_load_print_meta: n_rot = 128
58
+ llm_load_print_meta: n_swa = 0
59
+ llm_load_print_meta: n_embd_head_k = 128
60
+ llm_load_print_meta: n_embd_head_v = 128
61
+ llm_load_print_meta: n_gqa = 1
62
+ llm_load_print_meta: n_embd_k_gqa = 2048
63
+ llm_load_print_meta: n_embd_v_gqa = 2048
64
+ llm_load_print_meta: f_norm_eps = 0.0e+00
65
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
66
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
67
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
68
+ llm_load_print_meta: f_logit_scale = 0.0e+00
69
+ llm_load_print_meta: n_ff = 5440
70
+ llm_load_print_meta: n_expert = 0
71
+ llm_load_print_meta: n_expert_used = 0
72
+ llm_load_print_meta: causal attn = 1
73
+ llm_load_print_meta: pooling type = 0
74
+ llm_load_print_meta: rope type = 0
75
+ llm_load_print_meta: rope scaling = linear
76
+ llm_load_print_meta: freq_base_train = 10000.0
77
+ llm_load_print_meta: freq_scale_train = 1
78
+ llm_load_print_meta: n_ctx_orig_yarn = 8192
79
+ llm_load_print_meta: rope_finetuned = unknown
80
+ llm_load_print_meta: ssm_d_conv = 0
81
+ llm_load_print_meta: ssm_d_inner = 0
82
+ llm_load_print_meta: ssm_d_state = 0
83
+ llm_load_print_meta: ssm_dt_rank = 0
84
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
85
+ llm_load_print_meta: model type = ?B
86
+ llm_load_print_meta: model ftype = Q6_K
87
+ llm_load_print_meta: model params = 2.25 B
88
+ llm_load_print_meta: model size = 2.36 GiB (8.99 BPW)
89
+ llm_load_print_meta: general.name = n/a
90
+ llm_load_print_meta: BOS token = 1 '<s>'
91
+ llm_load_print_meta: EOS token = 2 '</s>'
92
+ llm_load_print_meta: UNK token = 0 '<unk>'
93
+ llm_load_print_meta: PAD token = 0 '<unk>'
94
+ llm_load_print_meta: LF token = 145 '<0x0A>'
95
+ llm_load_print_meta: EOT token = 5 '<|im_end|>'
96
+ llm_load_print_meta: EOG token = 2 '</s>'
97
+ llm_load_print_meta: EOG token = 5 '<|im_end|>'
98
+ llm_load_print_meta: max token length = 72
99
+ llm_load_tensors: ggml ctx size = 0.20 MiB
100
+ llm_load_tensors: offloading 24 repeating layers to GPU
101
+ llm_load_tensors: offloading non-repeating layers to GPU
102
+ llm_load_tensors: offloaded 25/25 layers to GPU
103
+ llm_load_tensors: Metal buffer size = 2414.85 MiB
104
+ llm_load_tensors: CPU buffer size = 410.16 MiB
105
+ ............................................
106
+ llama_new_context_with_model: n_ctx = 8192
107
+ llama_new_context_with_model: n_batch = 512
108
+ llama_new_context_with_model: n_ubatch = 128
109
+ llama_new_context_with_model: flash_attn = 0
110
+ llama_new_context_with_model: freq_base = 10000.0
111
+ llama_new_context_with_model: freq_scale = 1
112
+ ggml_metal_init: allocating
113
+ ggml_metal_init: found device: Apple M3 Max
114
+ ggml_metal_init: picking default device: Apple M3 Max
115
+ ggml_metal_init: using embedded metal library
116
+ ggml_metal_init: GPU name: Apple M3 Max
117
+ ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
118
+ ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
119
+ ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
120
+ ggml_metal_init: simdgroup reduction support = true
121
+ ggml_metal_init: simdgroup matrix mul. support = true
122
+ ggml_metal_init: hasUnifiedMemory = true
123
+ ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
124
+ llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
125
+ llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
126
+ llama_new_context_with_model: CPU output buffer size = 0.98 MiB
127
+ llama_new_context_with_model: Metal compute buffer size = 72.00 MiB
128
+ llama_new_context_with_model: CPU compute buffer size = 125.00 MiB
129
+ llama_new_context_with_model: graph nodes = 774
130
+ llama_new_context_with_model: graph splits = 3
131
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
132
+
133
+ system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
134
+ perplexity: tokenizing the input ..
135
+ perplexity: tokenization took 2982.84 ms
136
+ perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1
137
+ perplexity: 10.33 seconds per pass - ETA 23.05 minutes
138
+ [1]17.0887,[2]17.2480,[3]15.6987,[4]15.5118,[5]14.8759,[6]14.4395,[7]15.3085,[8]14.7978,[9]14.5196,[10]13.8181,[11]14.4324,[12]14.4902,[13]15.5116,[14]15.7730,[15]15.7587,[16]16.2866,[17]16.5783,[18]16.4829,[19]16.5246,[20]16.8268,[21]16.8668,[22]14.8923,[23]15.0668,[24]14.6984,[25]14.1937,[26]13.7606,[27]13.5739,[28]13.4024,[29]13.3543,[30]13.1542,[31]13.3851,[32]13.4915,[33]13.9573,[34]14.2558,[35]14.5529,[36]14.3232,[37]14.3131,[38]14.3892,[39]14.2419,[40]14.2755,[41]14.2509,[42]14.0670,[43]14.0165,[44]14.1783,[45]14.3806,[46]14.2373,[47]14.4687,[48]14.5800,[49]14.8482,[50]15.1185,[51]15.1519,[52]15.3580,[53]15.6689,[54]15.9795,[55]16.0855,[56]15.9232,[57]15.8291,[58]15.5654,[59]15.4625,[60]15.2742,[61]15.3247,[62]15.4560,[63]15.6365,[64]15.6977,[65]15.7257,[66]15.9087,[67]15.8832,[68]15.7747,[69]15.6368,[70]15.5331,[71]15.5278,[72]15.4735,[73]15.4829,[74]15.4266,[75]15.4001,[76]15.3404,[77]15.3975,[78]15.3973,[79]15.4064,[80]15.4421,[81]15.1622,[82]15.1410,[83]15.0137,[84]15.0454,[85]15.0923,[86]15.2814,[87]15.3044,[88]15.4548,[89]15.5065,[90]15.6281,[91]15.6818,[92]15.5223,[93]15.5863,[94]15.5742,[95]15.7075,[96]15.8941,[97]15.9685,[98]16.0622,[99]16.1972,[100]16.2384,[101]16.2648,[102]16.2268,[103]16.1987,[104]16.1825,[105]16.1692,[106]16.0437,[107]15.9193,[108]15.9790,[109]15.9957,[110]15.9096,[111]15.8740,[112]15.7284,[113]15.5919,[114]15.5862,[115]15.5609,[116]15.5698,[117]15.4663,[118]15.3402,[119]15.3331,[120]15.3912,[121]15.4059,[122]15.4282,[123]15.4624,[124]15.4779,[125]15.4721,[126]15.4969,[127]15.5206,[128]15.5981,[129]15.5883,[130]15.5662,[131]15.6214,[132]15.5974,[133]15.5429,[134]15.3961,
139
+ Final estimate: PPL = 15.3961 +/- 0.06268
140
+
141
+ llama_perf_context_print: load time = 1468.10 ms
142
+ llama_perf_context_print: prompt eval time = 1381353.52 ms / 1097728 tokens ( 1.26 ms per token, 794.68 tokens per second)
143
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
144
+ llama_perf_context_print: total time = 1422214.42 ms / 1097729 tokens
145
+ ggml_metal_free: deallocating
perplexity_Q8_0.txt ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
2
+ llama_model_loader: loaded meta data with 35 key-value pairs and 219 tensors from salamandra-2b-instruct_Q8_0.gguf (version GGUF V3 (latest))
3
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
4
+ llama_model_loader: - kv 0: general.architecture str = llama
5
+ llama_model_loader: - kv 1: general.type str = model
6
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
7
+ llama_model_loader: - kv 3: general.license str = apache-2.0
8
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
9
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
10
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
11
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
12
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
13
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
14
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
15
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
16
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
17
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
18
+ llama_model_loader: - kv 14: general.file_type u32 = 7
19
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
20
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
21
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
22
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
23
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
24
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
25
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
26
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
27
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
28
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
29
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
30
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
31
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
32
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
33
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
34
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
35
+ llama_model_loader: - kv 31: quantize.imatrix.file str = imatrix/oscar/imatrix.dat
36
+ llama_model_loader: - kv 32: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt
37
+ llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 168
38
+ llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 44176
39
+ llama_model_loader: - type f32: 49 tensors
40
+ llama_model_loader: - type q8_0: 169 tensors
41
+ llama_model_loader: - type bf16: 1 tensors
42
+ llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
43
+ llm_load_vocab: special tokens cache size = 104
44
+ llm_load_vocab: token to piece cache size = 1.8842 MB
45
+ llm_load_print_meta: format = GGUF V3 (latest)
46
+ llm_load_print_meta: arch = llama
47
+ llm_load_print_meta: vocab type = SPM
48
+ llm_load_print_meta: n_vocab = 256000
49
+ llm_load_print_meta: n_merges = 0
50
+ llm_load_print_meta: vocab_only = 0
51
+ llm_load_print_meta: n_ctx_train = 8192
52
+ llm_load_print_meta: n_embd = 2048
53
+ llm_load_print_meta: n_layer = 24
54
+ llm_load_print_meta: n_head = 16
55
+ llm_load_print_meta: n_head_kv = 16
56
+ llm_load_print_meta: n_rot = 128
57
+ llm_load_print_meta: n_swa = 0
58
+ llm_load_print_meta: n_embd_head_k = 128
59
+ llm_load_print_meta: n_embd_head_v = 128
60
+ llm_load_print_meta: n_gqa = 1
61
+ llm_load_print_meta: n_embd_k_gqa = 2048
62
+ llm_load_print_meta: n_embd_v_gqa = 2048
63
+ llm_load_print_meta: f_norm_eps = 0.0e+00
64
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
65
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
66
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
67
+ llm_load_print_meta: f_logit_scale = 0.0e+00
68
+ llm_load_print_meta: n_ff = 5440
69
+ llm_load_print_meta: n_expert = 0
70
+ llm_load_print_meta: n_expert_used = 0
71
+ llm_load_print_meta: causal attn = 1
72
+ llm_load_print_meta: pooling type = 0
73
+ llm_load_print_meta: rope type = 0
74
+ llm_load_print_meta: rope scaling = linear
75
+ llm_load_print_meta: freq_base_train = 10000.0
76
+ llm_load_print_meta: freq_scale_train = 1
77
+ llm_load_print_meta: n_ctx_orig_yarn = 8192
78
+ llm_load_print_meta: rope_finetuned = unknown
79
+ llm_load_print_meta: ssm_d_conv = 0
80
+ llm_load_print_meta: ssm_d_inner = 0
81
+ llm_load_print_meta: ssm_d_state = 0
82
+ llm_load_print_meta: ssm_dt_rank = 0
83
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
84
+ llm_load_print_meta: model type = ?B
85
+ llm_load_print_meta: model ftype = Q8_0
86
+ llm_load_print_meta: model params = 2.25 B
87
+ llm_load_print_meta: model size = 2.69 GiB (10.25 BPW)
88
+ llm_load_print_meta: general.name = n/a
89
+ llm_load_print_meta: BOS token = 1 '<s>'
90
+ llm_load_print_meta: EOS token = 2 '</s>'
91
+ llm_load_print_meta: UNK token = 0 '<unk>'
92
+ llm_load_print_meta: PAD token = 0 '<unk>'
93
+ llm_load_print_meta: LF token = 145 '<0x0A>'
94
+ llm_load_print_meta: EOT token = 5 '<|im_end|>'
95
+ llm_load_print_meta: EOG token = 2 '</s>'
96
+ llm_load_print_meta: EOG token = 5 '<|im_end|>'
97
+ llm_load_print_meta: max token length = 72
98
+ llm_load_tensors: ggml ctx size = 0.20 MiB
99
+ llm_load_tensors: offloading 24 repeating layers to GPU
100
+ llm_load_tensors: offloading non-repeating layers to GPU
101
+ llm_load_tensors: offloaded 25/25 layers to GPU
102
+ llm_load_tensors: Metal buffer size = 2752.45 MiB
103
+ llm_load_tensors: CPU buffer size = 531.25 MiB
104
+ ..............................................
105
+ llama_new_context_with_model: n_ctx = 8192
106
+ llama_new_context_with_model: n_batch = 512
107
+ llama_new_context_with_model: n_ubatch = 128
108
+ llama_new_context_with_model: flash_attn = 0
109
+ llama_new_context_with_model: freq_base = 10000.0
110
+ llama_new_context_with_model: freq_scale = 1
111
+ ggml_metal_init: allocating
112
+ ggml_metal_init: found device: Apple M3 Max
113
+ ggml_metal_init: picking default device: Apple M3 Max
114
+ ggml_metal_init: using embedded metal library
115
+ ggml_metal_init: GPU name: Apple M3 Max
116
+ ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
117
+ ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
118
+ ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
119
+ ggml_metal_init: simdgroup reduction support = true
120
+ ggml_metal_init: simdgroup matrix mul. support = true
121
+ ggml_metal_init: hasUnifiedMemory = true
122
+ ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
123
+ llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
124
+ llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
125
+ llama_new_context_with_model: CPU output buffer size = 0.98 MiB
126
+ llama_new_context_with_model: Metal compute buffer size = 72.00 MiB
127
+ llama_new_context_with_model: CPU compute buffer size = 125.00 MiB
128
+ llama_new_context_with_model: graph nodes = 774
129
+ llama_new_context_with_model: graph splits = 3
130
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
131
+
132
+ system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
133
+ perplexity: tokenizing the input ..
134
+ perplexity: tokenization took 2890.81 ms
135
+ perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1
136
+ perplexity: 9.66 seconds per pass - ETA 21.57 minutes
137
+ [1]17.0900,[2]17.2426,[3]15.6960,[4]15.5004,[5]14.8627,[6]14.4270,[7]15.3004,[8]14.7900,[9]14.5098,[10]13.8086,[11]14.4216,[12]14.4788,[13]15.5017,[14]15.7599,[15]15.7465,[16]16.2741,[17]16.5646,[18]16.4675,[19]16.5092,[20]16.8109,[21]16.8498,[22]14.8777,[23]15.0527,[24]14.6855,[25]14.1820,[26]13.7497,[27]13.5624,[28]13.3915,[29]13.3436,[30]13.1437,[31]13.3746,[32]13.4818,[33]13.9475,[34]14.2460,[35]14.5429,[36]14.3139,[37]14.3042,[38]14.3798,[39]14.2324,[40]14.2660,[41]14.2413,[42]14.0575,[43]14.0072,[44]14.1687,[45]14.3701,[46]14.2268,[47]14.4577,[48]14.5686,[49]14.8366,[50]15.1069,[51]15.1403,[52]15.3456,[53]15.6561,[54]15.9664,[55]16.0721,[56]15.9099,[57]15.8156,[58]15.5525,[59]15.4494,[60]15.2612,[61]15.3116,[62]15.4426,[63]15.6231,[64]15.6839,[65]15.7118,[66]15.8945,[67]15.8694,[68]15.7612,[69]15.6235,[70]15.5194,[71]15.5137,[72]15.4592,[73]15.4688,[74]15.4122,[75]15.3869,[76]15.3275,[77]15.3844,[78]15.3841,[79]15.3929,[80]15.4288,[81]15.1483,[82]15.1268,[83]14.9998,[84]15.0316,[85]15.0785,[86]15.2672,[87]15.2901,[88]15.4407,[89]15.4927,[90]15.6146,[91]15.6685,[92]15.5091,[93]15.5730,[94]15.5610,[95]15.6941,[96]15.8808,[97]15.9547,[98]16.0485,[99]16.1837,[100]16.2244,[101]16.2508,[102]16.2129,[103]16.1850,[104]16.1688,[105]16.1554,[106]16.0302,[107]15.9058,[108]15.9652,[109]15.9820,[110]15.8958,[111]15.8602,[112]15.7149,[113]15.5783,[114]15.5728,[115]15.5477,[116]15.5567,[117]15.4532,[118]15.3271,[119]15.3203,[120]15.3782,[121]15.3928,[122]15.4152,[123]15.4498,[124]15.4654,[125]15.4595,[126]15.4843,[127]15.5078,[128]15.5850,[129]15.5754,[130]15.5533,[131]15.6085,[132]15.5844,[133]15.5300,[134]15.3831,
138
+ Final estimate: PPL = 15.3831 +/- 0.06266
139
+
140
+ llama_perf_context_print: load time = 1576.71 ms
141
+ llama_perf_context_print: prompt eval time = 1364068.65 ms / 1097728 tokens ( 1.24 ms per token, 804.75 tokens per second)
142
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
143
+ llama_perf_context_print: total time = 1400622.10 ms / 1097729 tokens
144
+ ggml_metal_free: deallocating
perplexity_bf16.txt ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
2
+ llama_model_loader: loaded meta data with 31 key-value pairs and 219 tensors from salamandra-2b-instruct_bf16.gguf (version GGUF V3 (latest))
3
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
4
+ llama_model_loader: - kv 0: general.architecture str = llama
5
+ llama_model_loader: - kv 1: general.type str = model
6
+ llama_model_loader: - kv 2: general.size_label str = 2.3B
7
+ llama_model_loader: - kv 3: general.license str = apache-2.0
8
+ llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
9
+ llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
10
+ llama_model_loader: - kv 6: llama.block_count u32 = 24
11
+ llama_model_loader: - kv 7: llama.context_length u32 = 8192
12
+ llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
13
+ llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
14
+ llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
15
+ llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
16
+ llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
17
+ llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
18
+ llama_model_loader: - kv 14: general.file_type u32 = 32
19
+ llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
20
+ llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
21
+ llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
22
+ llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
23
+ llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
24
+ llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
25
+ llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
26
+ llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
27
+ llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
28
+ llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
29
+ llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
30
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0
31
+ llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true
32
+ llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false
33
+ llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{...
34
+ llama_model_loader: - kv 30: general.quantization_version u32 = 2
35
+ llama_model_loader: - type f32: 49 tensors
36
+ llama_model_loader: - type bf16: 170 tensors
37
+ llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
38
+ llm_load_vocab: special tokens cache size = 104
39
+ llm_load_vocab: token to piece cache size = 1.8842 MB
40
+ llm_load_print_meta: format = GGUF V3 (latest)
41
+ llm_load_print_meta: arch = llama
42
+ llm_load_print_meta: vocab type = SPM
43
+ llm_load_print_meta: n_vocab = 256000
44
+ llm_load_print_meta: n_merges = 0
45
+ llm_load_print_meta: vocab_only = 0
46
+ llm_load_print_meta: n_ctx_train = 8192
47
+ llm_load_print_meta: n_embd = 2048
48
+ llm_load_print_meta: n_layer = 24
49
+ llm_load_print_meta: n_head = 16
50
+ llm_load_print_meta: n_head_kv = 16
51
+ llm_load_print_meta: n_rot = 128
52
+ llm_load_print_meta: n_swa = 0
53
+ llm_load_print_meta: n_embd_head_k = 128
54
+ llm_load_print_meta: n_embd_head_v = 128
55
+ llm_load_print_meta: n_gqa = 1
56
+ llm_load_print_meta: n_embd_k_gqa = 2048
57
+ llm_load_print_meta: n_embd_v_gqa = 2048
58
+ llm_load_print_meta: f_norm_eps = 0.0e+00
59
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
60
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
61
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
62
+ llm_load_print_meta: f_logit_scale = 0.0e+00
63
+ llm_load_print_meta: n_ff = 5440
64
+ llm_load_print_meta: n_expert = 0
65
+ llm_load_print_meta: n_expert_used = 0
66
+ llm_load_print_meta: causal attn = 1
67
+ llm_load_print_meta: pooling type = 0
68
+ llm_load_print_meta: rope type = 0
69
+ llm_load_print_meta: rope scaling = linear
70
+ llm_load_print_meta: freq_base_train = 10000.0
71
+ llm_load_print_meta: freq_scale_train = 1
72
+ llm_load_print_meta: n_ctx_orig_yarn = 8192
73
+ llm_load_print_meta: rope_finetuned = unknown
74
+ llm_load_print_meta: ssm_d_conv = 0
75
+ llm_load_print_meta: ssm_d_inner = 0
76
+ llm_load_print_meta: ssm_d_state = 0
77
+ llm_load_print_meta: ssm_dt_rank = 0
78
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
79
+ llm_load_print_meta: model type = ?B
80
+ llm_load_print_meta: model ftype = BF16
81
+ llm_load_print_meta: model params = 2.25 B
82
+ llm_load_print_meta: model size = 4.20 GiB (16.00 BPW)
83
+ llm_load_print_meta: general.name = n/a
84
+ llm_load_print_meta: BOS token = 1 '<s>'
85
+ llm_load_print_meta: EOS token = 2 '</s>'
86
+ llm_load_print_meta: UNK token = 0 '<unk>'
87
+ llm_load_print_meta: PAD token = 0 '<unk>'
88
+ llm_load_print_meta: LF token = 145 '<0x0A>'
89
+ llm_load_print_meta: EOT token = 5 '<|im_end|>'
90
+ llm_load_print_meta: EOG token = 2 '</s>'
91
+ llm_load_print_meta: EOG token = 5 '<|im_end|>'
92
+ llm_load_print_meta: max token length = 72
93
+ llm_load_tensors: ggml ctx size = 0.20 MiB
94
+ llm_load_tensors: offloading 24 repeating layers to GPU
95
+ llm_load_tensors: offloading non-repeating layers to GPU
96
+ llm_load_tensors: offloaded 25/25 layers to GPU
97
+ llm_load_tensors: Metal buffer size = 4298.39 MiB
98
+ llm_load_tensors: CPU buffer size = 1000.00 MiB
99
+ .......................................................
100
+ llama_new_context_with_model: n_ctx = 8192
101
+ llama_new_context_with_model: n_batch = 512
102
+ llama_new_context_with_model: n_ubatch = 128
103
+ llama_new_context_with_model: flash_attn = 0
104
+ llama_new_context_with_model: freq_base = 10000.0
105
+ llama_new_context_with_model: freq_scale = 1
106
+ ggml_metal_init: allocating
107
+ ggml_metal_init: found device: Apple M3 Max
108
+ ggml_metal_init: picking default device: Apple M3 Max
109
+ ggml_metal_init: using embedded metal library
110
+ ggml_metal_init: GPU name: Apple M3 Max
111
+ ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
112
+ ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
113
+ ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
114
+ ggml_metal_init: simdgroup reduction support = true
115
+ ggml_metal_init: simdgroup matrix mul. support = true
116
+ ggml_metal_init: hasUnifiedMemory = true
117
+ ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
118
+ llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
119
+ llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
120
+ llama_new_context_with_model: CPU output buffer size = 0.98 MiB
121
+ llama_new_context_with_model: Metal compute buffer size = 72.00 MiB
122
+ llama_new_context_with_model: CPU compute buffer size = 125.00 MiB
123
+ llama_new_context_with_model: graph nodes = 774
124
+ llama_new_context_with_model: graph splits = 339
125
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
126
+
127
+ system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
128
+ perplexity: tokenizing the input ..
129
+ perplexity: tokenization took 2392.75 ms
130
+ perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1
131
+ perplexity: 26.29 seconds per pass - ETA 58.72 minutes
132
+ [1]17.0945,[2]17.2430,[3]15.6983,[4]15.5040,[5]14.8664,[6]14.4292,[7]15.3001,[8]14.7921,[9]14.5097,[10]13.8068,[11]14.4200,[12]14.4767,[13]15.5006,[14]15.7598,[15]15.7466,[16]16.2740,[17]16.5636,[18]16.4667,[19]16.5097,[20]16.8117,[21]16.8507,[22]14.8782,[23]15.0531,[24]14.6859,[25]14.1819,[26]13.7495,[27]13.5620,[28]13.3912,[29]13.3431,[30]13.1431,[31]13.3738,[32]13.4801,[33]13.9456,[34]14.2441,[35]14.5410,[36]14.3118,[37]14.3020,[38]14.3775,[39]14.2297,[40]14.2632,[41]14.2385,[42]14.0548,[43]14.0045,[44]14.1658,[45]14.3670,[46]14.2237,[47]14.4546,[48]14.5655,[49]14.8335,[50]15.1038,[51]15.1372,[52]15.3426,[53]15.6530,[54]15.9634,[55]16.0689,[56]15.9065,[57]15.8118,[58]15.5488,[59]15.4459,[60]15.2578,[61]15.3081,[62]15.4391,[63]15.6192,[64]15.6799,[65]15.7079,[66]15.8906,[67]15.8656,[68]15.7574,[69]15.6198,[70]15.5156,[71]15.5100,[72]15.4556,[73]15.4652,[74]15.4087,[75]15.3826,[76]15.3231,[77]15.3801,[78]15.3798,[79]15.3887,[80]15.4246,[81]15.1447,[82]15.1232,[83]14.9963,[84]15.0280,[85]15.0748,[86]15.2635,[87]15.2864,[88]15.4369,[89]15.4888,[90]15.6106,[91]15.6644,[92]15.5051,[93]15.5691,[94]15.5571,[95]15.6902,[96]15.8767,[97]15.9505,[98]16.0444,[99]16.1795,[100]16.2202,[101]16.2466,[102]16.2088,[103]16.1811,[104]16.1649,[105]16.1516,[106]16.0264,[107]15.9021,[108]15.9615,[109]15.9784,[110]15.8923,[111]15.8568,[112]15.7114,[113]15.5749,[114]15.5696,[115]15.5445,[116]15.5536,[117]15.4501,[118]15.3239,[119]15.3171,[120]15.3751,[121]15.3897,[122]15.4121,[123]15.4467,[124]15.4623,[125]15.4566,[126]15.4812,[127]15.5047,[128]15.5819,[129]15.5723,[130]15.5502,[131]15.6053,[132]15.5812,[133]15.5268,[134]15.3799,
133
+ Final estimate: PPL = 15.3799 +/- 0.06263
134
+
135
+ llama_perf_context_print: load time = 757.14 ms
136
+ llama_perf_context_print: prompt eval time = 4094189.23 ms / 1097728 tokens ( 3.73 ms per token, 268.12 tokens per second)
137
+ llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
138
+ llama_perf_context_print: total time = 4170459.06 ms / 1097729 tokens
139
+ ggml_metal_free: deallocating
ppl_test_data.txt ADDED
The diff for this file is too large to render. See raw diff
 
quanization_results.md ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Full Perplexity Comparison Table for Release Documentation
2
+
3
+ | Quantization Type | PPL(Q) | ln(PPL(Q)/PPL(fp16)) | File Size (G) |
4
+ |-------------------|---------|---------------------|---------------|
5
+ | IQ2_S | 25.3893 | 0.501266 | 1.6 |
6
+ | IQ2_M | 21.6684 | 0.342794 | 1.6 |
7
+ | Q3_K_M | 16.8567 | 0.091687 | 1.8 |
8
+ | IQ3_M | 16.774 | 0.086769 | 1.7 |
9
+ | Q3_K_L | 16.5067 | 0.070705 | 1.8 |
10
+ | IQ4_NL | 15.9602 | 0.037037 | 1.9 |
11
+ | IQ4_XS | 15.9591 | 0.036968 | 1.8 |
12
+ | Q4_K_S | 15.9346 | 0.035431 | 1.9 |
13
+ | Q4_K_M | 15.8651 | 0.031060 | 2.0 |
14
+ | Q5_K_S | 15.4901 | 0.007140 | 2.1 |
15
+ | Q5_K_M | 15.4746 | 0.006139 | 2.2 |
16
+ | Q6_K | 15.3961 | 0.001053 | 2.4 |
17
+ | Q8_0 | 15.3831 | 0.000208 | 2.7 |
18
+ | bf16 | 15.3799 | 0.000000 | 4.2 |
19
+
20
+
21
+ ---
22
+
23
+ This full table documents all the quantization types tested, showing their respective **Perplexity (PPL)**, **ln(PPL(Q)/PPL(fp16))**, and **file sizes**.
quantizations.yaml ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ quantizations:
2
+ - IQ2_S
3
+ - IQ2_M
4
+ - IQ3_M
5
+ - IQ4_NL
6
+ - IQ4_XS
7
+ - Q3_K_L
8
+ - Q3_K_M
9
+ - Q4_K_M
10
+ - Q4_K_S
11
+ - Q5_K_M
12
+ - Q5_K_S
13
+ - Q6_K
14
+ - Q8_0
15
+
16
+ allowed_quantization_types:
17
+ - name: Q4_0
18
+ size: 4.34G
19
+ ppl: +0.4685
20
+ details: Llama-3-8B
21
+ - name: Q4_1
22
+ size: 4.78G
23
+ ppl: +0.4511
24
+ details: Llama-3-8B
25
+ - name: Q5_0
26
+ size: 5.21G
27
+ ppl: +0.1316
28
+ details: Llama-3-8B
29
+ - name: Q5_1
30
+ size: 5.65G
31
+ ppl: +0.1062
32
+ details: Llama-3-8B
33
+ - name: IQ2_XXS
34
+ size: "2.06 bpw"
35
+ type: quantization
36
+ - name: IQ2_XS
37
+ size: "2.31 bpw"
38
+ type: quantization
39
+ - name: IQ2_S
40
+ size: "2.5 bpw"
41
+ type: quantization
42
+ - name: IQ2_M
43
+ size: "2.7 bpw"
44
+ type: quantization
45
+ - name: IQ1_S
46
+ size: "1.56 bpw"
47
+ type: quantization
48
+ - name: IQ1_M
49
+ size: "1.75 bpw"
50
+ type: quantization
51
+ - name: TQ1_0
52
+ size: "1.69 bpw"
53
+ type: ternarization
54
+ - name: TQ2_0
55
+ size: "2.06 bpw"
56
+ type: ternarization
57
+ - name: Q2_K
58
+ size: 2.96G
59
+ ppl: +3.5199
60
+ details: Llama-3-8B
61
+ - name: Q2_K_S
62
+ size: 2.96G
63
+ ppl: +3.1836
64
+ details: Llama-3-8B
65
+ - name: IQ3_XXS
66
+ size: "3.06 bpw"
67
+ type: quantization
68
+ - name: IQ3_S
69
+ size: "3.44 bpw"
70
+ type: quantization
71
+ - name: IQ3_M
72
+ size: "3.66 bpw"
73
+ type: quantization mix
74
+ - name: Q3_K
75
+ alias: Q3_K_M
76
+ - name: IQ3_XS
77
+ size: "3.3 bpw"
78
+ type: quantization
79
+ - name: Q3_K_S
80
+ size: 3.41G
81
+ ppl: +1.6321
82
+ details: Llama-3-8B
83
+ - name: Q3_K_M
84
+ size: 3.74G
85
+ ppl: +0.6569
86
+ details: Llama-3-8B
87
+ - name: Q3_K_L
88
+ size: 4.03G
89
+ ppl: +0.5562
90
+ details: Llama-3-8B
91
+ - name: IQ4_NL
92
+ size: "4.50 bpw"
93
+ type: non-linear quantization
94
+ - name: IQ4_XS
95
+ size: "4.25 bpw"
96
+ type: non-linear quantization
97
+ - name: Q4_K
98
+ alias: Q4_K_M
99
+ - name: Q4_K_S
100
+ size: 4.37G
101
+ ppl: +0.2689
102
+ details: Llama-3-8B
103
+ - name: Q4_K_M
104
+ size: 4.58G
105
+ ppl: +0.1754
106
+ details: Llama-3-8B
107
+ - name: Q5_K
108
+ alias: Q5_K_M
109
+ - name: Q5_K_S
110
+ size: 5.21G
111
+ ppl: +0.1049
112
+ details: Llama-3-8B
113
+ - name: Q5_K_M
114
+ size: 5.33G
115
+ ppl: +0.0569
116
+ details: Llama-3-8B
117
+ - name: Q6_K
118
+ size: 6.14G
119
+ ppl: +0.0217
120
+ details: Llama-3-8B
121
+ - name: Q8_0
122
+ size: 7.96G
123
+ ppl: +0.0026
124
+ details: Llama-3-8B
125
+ - name: F16
126
+ size: 14.00G
127
+ ppl: +0.0020
128
+ details: Mistral-7B
129
+ - name: BF16
130
+ size: 14.00G
131
+ ppl: -0.0050
132
+ details: Mistral-7B
133
+ - name: F32
134
+ size: 26.00G
135
+ details: 7B
136
+ - name: COPY
137
+ description: Only copy tensors, no quantizing
quantize.ipynb ADDED
@@ -0,0 +1,599 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 2,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "from collections import defaultdict\n",
10
+ "import math\n",
11
+ "import multiprocessing\n",
12
+ "import json\n",
13
+ "import os\n",
14
+ "import re\n",
15
+ "import subprocess\n",
16
+ "import yaml"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": 5,
22
+ "metadata": {},
23
+ "outputs": [],
24
+ "source": [
25
+ "# Define base model name and default values for parameters\n",
26
+ "path_to_llamacpp = '/Users/macdev/Downloads/build/bin'\n",
27
+ "base_model_name = 'salamandra-2b-instruct'\n"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": 8,
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "def extract_from_config(config_file):\n",
37
+ " \"\"\"Extract parameters like context size, rope frequency base, and other sampling settings from a config JSON file.\"\"\"\n",
38
+ " with open(config_file, 'r') as file:\n",
39
+ " config_data = json.load(file)\n",
40
+ "\n",
41
+ " # Extract parameters if present\n",
42
+ " params = {}\n",
43
+ " params['ctx_size'] = config_data.get(\"max_position_embeddings\") # Context size\n",
44
+ " params['rope_freq_base'] = config_data.get(\"rope_theta\") # RoPE frequency base\n",
45
+ " params['rope_scaling'] = config_data.get(\"rope_scaling\") # RoPE scaling factor\n",
46
+ " params['rope_scaling_type'] = config_data.get(\"rope_scaling_type\") # RoPE scaling type\n",
47
+ " params['torch_dtype'] = config_data.get(\"torch_dtype\") # Torch data type\n",
48
+ " params['top_p'] = config_data.get(\"sampling.top_p\") # Top-p sampling\n",
49
+ " params['temp'] = config_data.get(\"sampling.temperature\") # Sampling temperature\n",
50
+ " params['repeat_penalty'] = config_data.get(\"sampling.repeat_penalty\") # Repetition penalty\n",
51
+ " params['repeat_last_n'] = config_data.get(\"sampling.repeat_last_n\") # Last N tokens for repetition penalty\n",
52
+ " params['min_p'] = config_data.get(\"sampling.min_p\") # Minimum probability sampling\n",
53
+ " params['top_k'] = config_data.get(\"sampling.top_k\") # Top-k sampling\n",
54
+ " params['presence_penalty'] = config_data.get(\"sampling.presence_penalty\") # Presence penalty for repeat tokens\n",
55
+ " params['frequency_penalty'] = config_data.get(\"sampling.frequency_penalty\") # Frequency penalty for repeat tokens\n",
56
+ " params['mirostat'] = config_data.get(\"sampling.mirostat\") # Mirostat sampling\n",
57
+ " params['mirostat_lr'] = config_data.get(\"sampling.mirostat_lr\") # Mirostat learning rate\n",
58
+ " params['mirostat_ent'] = config_data.get(\"sampling.mirostat_ent\") # Mirostat entropy target\n",
59
+ " params['tfs'] = config_data.get(\"sampling.tfs\") # Tail free sampling\n",
60
+ " params['typical'] = config_data.get(\"sampling.typical\") # Locally typical sampling\n",
61
+ "\n",
62
+ " return params\n"
63
+ ]
64
+ },
65
+ {
66
+ "cell_type": "code",
67
+ "execution_count": 7,
68
+ "metadata": {},
69
+ "outputs": [],
70
+ "source": [
71
+ "unquantized = defaultdict(lambda: \"fp16\")\n",
72
+ "unquantized[\"float32\"] = \"fp32\"\n",
73
+ "unquantized[\"float16\"] = \"fp16\"\n",
74
+ "unquantized[\"bfloat16\"] = \"bf16\""
75
+ ]
76
+ },
77
+ {
78
+ "cell_type": "code",
79
+ "execution_count": 6,
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "def extract_from_generation_config(generation_config_file):\n",
84
+ " \"\"\"Extract generation-specific parameters relevant to llama-perplexity if available.\"\"\"\n",
85
+ " with open(generation_config_file, 'r') as file:\n",
86
+ " generation_data = json.load(file)\n",
87
+ " \n",
88
+ " # Extract and map only parameters useful for llama-perplexity\n",
89
+ " params = {}\n",
90
+ " params['top_p'] = generation_data.get(\"top_p\") # Top-p sampling\n",
91
+ " params['temp'] = generation_data.get(\"temperature\") # Sampling temperature\n",
92
+ " params['repeat_penalty'] = generation_data.get(\"repetition_penalty\") # Repetition penalty\n",
93
+ " params['repeat_last_n'] = generation_data.get(\"repeat_last_n\") # Last N tokens for repetition penalty\n",
94
+ " params['top_k'] = generation_data.get(\"top_k\") # Top-k sampling (if present)\n",
95
+ " params['presence_penalty'] = generation_data.get(\"presence_penalty\") # Presence penalty\n",
96
+ " params['frequency_penalty'] = generation_data.get(\"frequency_penalty\")# Frequency penalty\n",
97
+ "\n",
98
+ " # Remove None values to avoid overwriting defaults\n",
99
+ " params = {key: value for key, value in params.items() if value is not None}\n",
100
+ "\n",
101
+ " return params\n"
102
+ ]
103
+ },
104
+ {
105
+ "cell_type": "code",
106
+ "execution_count": 9,
107
+ "metadata": {},
108
+ "outputs": [],
109
+ "source": [
110
+ "def get_parameters(use_temp=False):\n",
111
+ " \"\"\"Retrieve parameters from the configuration files or use defaults, preferring generation_config if available.\"\"\"\n",
112
+ " # Initialize default parameters\n",
113
+ " config_params = dict()\n",
114
+ "\n",
115
+ " # Extract parameters from config.json, if available\n",
116
+ " try:\n",
117
+ " config_params.update(extract_from_config('config.json'))\n",
118
+ " except FileNotFoundError:\n",
119
+ " print(\"config.json not found. Using default values.\")\n",
120
+ "\n",
121
+ " # Extract parameters from generation_config.json, if available and prefer these values\n",
122
+ " try:\n",
123
+ " gen_params = extract_from_generation_config('generation_config.json')\n",
124
+ " # Update config_params with values from gen_params, if they are not None\n",
125
+ " for key, value in gen_params.items():\n",
126
+ " if value is not None:\n",
127
+ " config_params[key] = value\n",
128
+ " except FileNotFoundError:\n",
129
+ " print(\"generation_config.json not found. Using default generation values.\")\n",
130
+ "\n",
131
+ " # Ensure that temperature ('temp') is never used\n",
132
+ " if 'temp' in config_params and use_temp is False:\n",
133
+ " config_params['temp'] = 0 # Set temperature to 0\n",
134
+ "\n",
135
+ " return config_params\n"
136
+ ]
137
+ },
138
+ {
139
+ "cell_type": "code",
140
+ "execution_count": 10,
141
+ "metadata": {},
142
+ "outputs": [
143
+ {
144
+ "name": "stdout",
145
+ "output_type": "stream",
146
+ "text": [
147
+ "{'ctx_size': 8192, 'rope_freq_base': 10000.0, 'rope_scaling': None, 'rope_scaling_type': None, 'torch_dtype': 'bfloat16', 'top_p': None, 'temp': 0, 'repeat_penalty': 1.2, 'repeat_last_n': None, 'min_p': None, 'top_k': None, 'presence_penalty': None, 'frequency_penalty': None, 'mirostat': None, 'mirostat_lr': None, 'mirostat_ent': None, 'tfs': None, 'typical': None}\n"
148
+ ]
149
+ }
150
+ ],
151
+ "source": [
152
+ "# Extract configuration parameters\n",
153
+ "config_params = get_parameters()\n",
154
+ "print(config_params)\n",
155
+ "\n",
156
+ "base_precision = unquantized[config_params[\"torch_dtype\"]]\n",
157
+ "\n",
158
+ "base_model = f'{base_model_name}_{base_precision}.gguf'\n",
159
+ "base_perplexity_file = f\"perplexity_{base_precision}.txt\"\n",
160
+ "\n",
161
+ "threads = max(multiprocessing.cpu_count() - 1, 1)\n",
162
+ "batch_size = 512\n",
163
+ "ubatch_size = 128\n",
164
+ "dataset_file = \"imatrix/oscar/imatrix-dataset.txt\" \n",
165
+ "ppl_file = \"ppl_test_data.txt\""
166
+ ]
167
+ },
168
+ {
169
+ "cell_type": "code",
170
+ "execution_count": 3,
171
+ "metadata": {},
172
+ "outputs": [
173
+ {
174
+ "name": "stdout",
175
+ "output_type": "stream",
176
+ "text": [
177
+ "Quantization types: ['IQ2_S', 'IQ2_M', 'IQ3_M', 'IQ4_NL', 'IQ4_XS', 'Q3_K_L', 'Q3_K_M', 'Q4_K_M', 'Q4_K_S', 'Q5_K_M', 'Q5_K_S', 'Q6_K', 'Q8_0']\n"
178
+ ]
179
+ }
180
+ ],
181
+ "source": [
182
+ "# Load YAML file and extract quantization types\n",
183
+ "yaml_file = 'quantizations.yaml'\n",
184
+ "with open(yaml_file, 'r') as file:\n",
185
+ " data = yaml.safe_load(file)\n",
186
+ "\n",
187
+ "# Extract the list of quantization types\n",
188
+ "quantization_types = data['quantizations']\n",
189
+ "print(\"Quantization types: \", quantization_types)"
190
+ ]
191
+ },
192
+ {
193
+ "cell_type": "code",
194
+ "execution_count": 12,
195
+ "metadata": {},
196
+ "outputs": [],
197
+ "source": [
198
+ "# Quantization parameters\n",
199
+ "use_leave_output_tensor = True # Set to False if you don't want to use --leave-output-tensor\n",
200
+ "\n",
201
+ "# Optional importance matrix path (set to None if you don't want to include --imatrix)\n",
202
+ "imatrix_path = \"imatrix/oscar/imatrix.dat\" "
203
+ ]
204
+ },
205
+ {
206
+ "cell_type": "code",
207
+ "execution_count": 13,
208
+ "metadata": {},
209
+ "outputs": [],
210
+ "source": [
211
+ "def quantize_model(\n",
212
+ " quantization_type, \n",
213
+ " base_model, \n",
214
+ " base_model_name, \n",
215
+ " path_to_llamacpp=\"\",\n",
216
+ " imatrix_path=None, \n",
217
+ " use_leave_output_tensor=True,\n",
218
+ " output_dir=\".\"\n",
219
+ "):\n",
220
+ " \"\"\"\n",
221
+ " Quantize the base model into the specified quantization type.\n",
222
+ "\n",
223
+ " Parameters:\n",
224
+ " - quantization_type (str): The type of quantization (e.g., \"Q4_0\", \"Q5_K_M\").\n",
225
+ " - base_model (str): Path to the base model file (e.g., \"salamandra-2b_bf16.gguf\").\n",
226
+ " - base_model_name (str): The base name of the model (e.g., \"salamandra-2b\").\n",
227
+ " - path_to_llamacpp (str): Path to the llama-quantize binary.\n",
228
+ " - imatrix_path (str, optional): Path to the importance matrix file. Default is None.\n",
229
+ " - use_leave_output_tensor (bool): Whether to include the --leave-output-tensor flag. Default is True.\n",
230
+ " - output_dir (str): Directory where the quantized models and logs will be saved. Default is current directory.\n",
231
+ "\n",
232
+ " Returns:\n",
233
+ " - None\n",
234
+ " \"\"\"\n",
235
+ " # Construct the output model path\n",
236
+ " output_model = os.path.join(output_dir, f\"{base_model_name}_{quantization_type}.gguf\")\n",
237
+ "\n",
238
+ " # Check if the quantized model already exists\n",
239
+ " if os.path.exists(output_model):\n",
240
+ " print(f\"Quantized model {output_model} already exists. Skipping quantization.\")\n",
241
+ " return\n",
242
+ "\n",
243
+ " # Build the llama-quantize command\n",
244
+ " command_parts = [\n",
245
+ " os.path.join(path_to_llamacpp, \"llama-quantize\")\n",
246
+ " ]\n",
247
+ "\n",
248
+ " # Conditionally add the --imatrix argument if the path is provided\n",
249
+ " if imatrix_path:\n",
250
+ " command_parts.append(f\"--imatrix {imatrix_path}\")\n",
251
+ "\n",
252
+ " # Conditionally add the --leave-output-tensor argument based on the external boolean\n",
253
+ " if use_leave_output_tensor:\n",
254
+ " command_parts.append(\"--leave-output-tensor\")\n",
255
+ "\n",
256
+ " # Add base model, output model, and quantization type\n",
257
+ " command_parts.extend([\n",
258
+ " f\"{base_model}\",\n",
259
+ " f\"\\\"{output_model}\\\"\",\n",
260
+ " f\"{quantization_type}\"\n",
261
+ " ])\n",
262
+ "\n",
263
+ " # Redirect output to a log file for each quantization type\n",
264
+ " log_file = os.path.join(output_dir, f\"{quantization_type}_log.txt\")\n",
265
+ " command_parts.append(f\"> \\\"{log_file}\\\" 2>&1\")\n",
266
+ "\n",
267
+ " # Join the command parts into a single command string\n",
268
+ " quantize_command = \" \".join(command_parts)\n",
269
+ "\n",
270
+ " # Run the quantization command\n",
271
+ " print(f\"Quantizing model to {quantization_type} format with command: {quantize_command}\")\n",
272
+ " result = subprocess.run(quantize_command, shell=True, text=True)\n",
273
+ " if result.returncode != 0:\n",
274
+ " print(f\"Error during quantization to {quantization_type}. Check {log_file} for details.\")\n",
275
+ " else:\n",
276
+ " print(f\"Successfully quantized model to {quantization_type} and saved as {output_model}.\")\n"
277
+ ]
278
+ },
279
+ {
280
+ "cell_type": "code",
281
+ "execution_count": 14,
282
+ "metadata": {},
283
+ "outputs": [],
284
+ "source": [
285
+ "def run_command(command):\n",
286
+ " \"\"\"Function to run a command and capture output\"\"\"\n",
287
+ " print(f\"Running command: {command}\")\n",
288
+ " result = subprocess.run(command, shell=True, capture_output=True, text=True)\n",
289
+ " if result.returncode != 0:\n",
290
+ " print(f\"Error executing command: {result.stderr}\")\n",
291
+ " return result.stdout\n"
292
+ ]
293
+ },
294
+ {
295
+ "cell_type": "code",
296
+ "execution_count": 15,
297
+ "metadata": {},
298
+ "outputs": [],
299
+ "source": [
300
+ "def extract_perplexity(output):\n",
301
+ " \"\"\"extract perplexity from the output\"\"\"\n",
302
+ " match = re.search(r\"Final estimate: PPL = ([\\d.]+)\", output)\n",
303
+ " if match:\n",
304
+ " return float(match.group(1))\n",
305
+ " return None\n"
306
+ ]
307
+ },
308
+ {
309
+ "cell_type": "code",
310
+ "execution_count": 16,
311
+ "metadata": {},
312
+ "outputs": [],
313
+ "source": [
314
+ "def build_command(model, output_file, ppl_file, config_params, threads=8, batch_size=512, ubatch_size=128):\n",
315
+ " \"\"\"Build the perplexity command based on the provided parameters.\"\"\"\n",
316
+ " command_parts = [\n",
317
+ " \"/Users/macdev/Downloads/build/bin/llama-perplexity\",\n",
318
+ " f\"-m {model}\",\n",
319
+ " f\"-f {ppl_file}\",\n",
320
+ " \"--perplexity\",\n",
321
+ " ]\n",
322
+ "\n",
323
+ " # Add parameters only if they are set in config_params\n",
324
+ " if config_params.get('ctx_size') is not None:\n",
325
+ " command_parts.append(f\"--ctx-size {config_params['ctx_size']}\")\n",
326
+ " if config_params.get('rope_freq_base') is not None:\n",
327
+ " command_parts.append(f\"--rope-freq-base {config_params['rope_freq_base']}\")\n",
328
+ " if config_params.get('rope_freq_scale') is not None:\n",
329
+ " command_parts.append(f\"--rope-freq-scale {config_params['rope_freq_scale']}\")\n",
330
+ " if config_params.get('rope_scaling_type') is not None:\n",
331
+ " command_parts.append(f\"--rope-scaling {config_params['rope_scaling_type']}\")\n",
332
+ "\n",
333
+ " # Add sampling-related parameters if they are set\n",
334
+ " if config_params.get('top_p') is not None:\n",
335
+ " command_parts.append(f\"--top-p {config_params['top_p']}\")\n",
336
+ " if config_params.get('repeat_penalty') is not None:\n",
337
+ " command_parts.append(f\"--repeat-penalty {config_params['repeat_penalty']}\")\n",
338
+ " if config_params.get('repeat_last_n') is not None:\n",
339
+ " command_parts.append(f\"--repeat-last-n {config_params['repeat_last_n']}\")\n",
340
+ "\n",
341
+ " # Do not include `temp` as it's set to 0 in `get_parameters` if `use_temp` is False\n",
342
+ " # Only add if temp is non-zero (if `use_temp` is True in get_parameters)\n",
343
+ " if config_params.get('temp') is not None and config_params['temp'] != 0:\n",
344
+ " command_parts.append(f\"--temp {config_params['temp']}\")\n",
345
+ "\n",
346
+ " # Add fixed parameters for threads and batch sizes\n",
347
+ " command_parts.extend([\n",
348
+ " f\"--threads {threads}\",\n",
349
+ " f\"--batch-size {batch_size}\",\n",
350
+ " f\"--ubatch-size {ubatch_size}\",\n",
351
+ " ])\n",
352
+ "\n",
353
+ " # Redirect output to file\n",
354
+ " command = \" \".join(command_parts) + f\" > {output_file} 2>&1\"\n",
355
+ " return command\n"
356
+ ]
357
+ },
358
+ {
359
+ "cell_type": "code",
360
+ "execution_count": 17,
361
+ "metadata": {},
362
+ "outputs": [],
363
+ "source": [
364
+ "# Measure perplexity for the base model\n",
365
+ "if os.path.exists(f'perplexity_{base_precision}.txt'):\n",
366
+ " with open(base_perplexity_file, 'r') as file:\n",
367
+ " base_output = file.read()\n",
368
+ "else:\n",
369
+ " base_command = build_command(base_model, base_perplexity_file, ppl_file, config_params=config_params, threads=threads, batch_size=batch_size, ubatch_size= ubatch_size)\n",
370
+ " base_output = run_command(base_command)\n",
371
+ "base_perplexity = extract_perplexity(base_output)\n",
372
+ "calculated_perplexity_recently = False # This will be set to True later"
373
+ ]
374
+ },
375
+ {
376
+ "cell_type": "code",
377
+ "execution_count": 26,
378
+ "metadata": {},
379
+ "outputs": [
380
+ {
381
+ "name": "stdout",
382
+ "output_type": "stream",
383
+ "text": [
384
+ "Quantizing model to IQ2_S format with command: /Users/macdev/Downloads/build/bin/llama-quantize --imatrix imatrix/oscar/imatrix.dat --leave-output-tensor salamandra-2b-instruct_bf16.gguf \"./salamandra-2b-instruct_IQ2_S.gguf\" IQ2_S > \"./IQ2_S_log.txt\" 2>&1\n",
385
+ "Successfully quantized model to IQ2_S and saved as ./salamandra-2b-instruct_IQ2_S.gguf.\n",
386
+ "Quantizing model to IQ2_M format with command: /Users/macdev/Downloads/build/bin/llama-quantize --imatrix imatrix/oscar/imatrix.dat --leave-output-tensor salamandra-2b-instruct_bf16.gguf \"./salamandra-2b-instruct_IQ2_M.gguf\" IQ2_M > \"./IQ2_M_log.txt\" 2>&1\n",
387
+ "Successfully quantized model to IQ2_M and saved as ./salamandra-2b-instruct_IQ2_M.gguf.\n",
388
+ "Quantizing model to IQ3_M format with command: /Users/macdev/Downloads/build/bin/llama-quantize --imatrix imatrix/oscar/imatrix.dat --leave-output-tensor salamandra-2b-instruct_bf16.gguf \"./salamandra-2b-instruct_IQ3_M.gguf\" IQ3_M > \"./IQ3_M_log.txt\" 2>&1\n",
389
+ "Successfully quantized model to IQ3_M and saved as ./salamandra-2b-instruct_IQ3_M.gguf.\n",
390
+ "Quantizing model to IQ4_NL format with command: /Users/macdev/Downloads/build/bin/llama-quantize --imatrix imatrix/oscar/imatrix.dat --leave-output-tensor salamandra-2b-instruct_bf16.gguf \"./salamandra-2b-instruct_IQ4_NL.gguf\" IQ4_NL > \"./IQ4_NL_log.txt\" 2>&1\n",
391
+ "Successfully quantized model to IQ4_NL and saved as ./salamandra-2b-instruct_IQ4_NL.gguf.\n",
392
+ "Quantizing model to IQ4_XS format with command: /Users/macdev/Downloads/build/bin/llama-quantize --imatrix imatrix/oscar/imatrix.dat --leave-output-tensor salamandra-2b-instruct_bf16.gguf \"./salamandra-2b-instruct_IQ4_XS.gguf\" IQ4_XS > \"./IQ4_XS_log.txt\" 2>&1\n",
393
+ "Successfully quantized model to IQ4_XS and saved as ./salamandra-2b-instruct_IQ4_XS.gguf.\n",
394
+ "Quantizing model to Q3_K_L format with command: /Users/macdev/Downloads/build/bin/llama-quantize --imatrix imatrix/oscar/imatrix.dat --leave-output-tensor salamandra-2b-instruct_bf16.gguf \"./salamandra-2b-instruct_Q3_K_L.gguf\" Q3_K_L > \"./Q3_K_L_log.txt\" 2>&1\n",
395
+ "Successfully quantized model to Q3_K_L and saved as ./salamandra-2b-instruct_Q3_K_L.gguf.\n",
396
+ "Quantizing model to Q3_K_M format with command: /Users/macdev/Downloads/build/bin/llama-quantize --imatrix imatrix/oscar/imatrix.dat --leave-output-tensor salamandra-2b-instruct_bf16.gguf \"./salamandra-2b-instruct_Q3_K_M.gguf\" Q3_K_M > \"./Q3_K_M_log.txt\" 2>&1\n",
397
+ "Successfully quantized model to Q3_K_M and saved as ./salamandra-2b-instruct_Q3_K_M.gguf.\n",
398
+ "Quantizing model to Q4_K_M format with command: /Users/macdev/Downloads/build/bin/llama-quantize --imatrix imatrix/oscar/imatrix.dat --leave-output-tensor salamandra-2b-instruct_bf16.gguf \"./salamandra-2b-instruct_Q4_K_M.gguf\" Q4_K_M > \"./Q4_K_M_log.txt\" 2>&1\n",
399
+ "Successfully quantized model to Q4_K_M and saved as ./salamandra-2b-instruct_Q4_K_M.gguf.\n",
400
+ "Quantizing model to Q4_K_S format with command: /Users/macdev/Downloads/build/bin/llama-quantize --imatrix imatrix/oscar/imatrix.dat --leave-output-tensor salamandra-2b-instruct_bf16.gguf \"./salamandra-2b-instruct_Q4_K_S.gguf\" Q4_K_S > \"./Q4_K_S_log.txt\" 2>&1\n",
401
+ "Successfully quantized model to Q4_K_S and saved as ./salamandra-2b-instruct_Q4_K_S.gguf.\n",
402
+ "Quantizing model to Q5_K_M format with command: /Users/macdev/Downloads/build/bin/llama-quantize --imatrix imatrix/oscar/imatrix.dat --leave-output-tensor salamandra-2b-instruct_bf16.gguf \"./salamandra-2b-instruct_Q5_K_M.gguf\" Q5_K_M > \"./Q5_K_M_log.txt\" 2>&1\n",
403
+ "Successfully quantized model to Q5_K_M and saved as ./salamandra-2b-instruct_Q5_K_M.gguf.\n",
404
+ "Quantizing model to Q5_K_S format with command: /Users/macdev/Downloads/build/bin/llama-quantize --imatrix imatrix/oscar/imatrix.dat --leave-output-tensor salamandra-2b-instruct_bf16.gguf \"./salamandra-2b-instruct_Q5_K_S.gguf\" Q5_K_S > \"./Q5_K_S_log.txt\" 2>&1\n",
405
+ "Successfully quantized model to Q5_K_S and saved as ./salamandra-2b-instruct_Q5_K_S.gguf.\n",
406
+ "Quantizing model to Q6_K format with command: /Users/macdev/Downloads/build/bin/llama-quantize --imatrix imatrix/oscar/imatrix.dat --leave-output-tensor salamandra-2b-instruct_bf16.gguf \"./salamandra-2b-instruct_Q6_K.gguf\" Q6_K > \"./Q6_K_log.txt\" 2>&1\n",
407
+ "Successfully quantized model to Q6_K and saved as ./salamandra-2b-instruct_Q6_K.gguf.\n",
408
+ "Quantizing model to Q8_0 format with command: /Users/macdev/Downloads/build/bin/llama-quantize --imatrix imatrix/oscar/imatrix.dat --leave-output-tensor salamandra-2b-instruct_bf16.gguf \"./salamandra-2b-instruct_Q8_0.gguf\" Q8_0 > \"./Q8_0_log.txt\" 2>&1\n",
409
+ "Successfully quantized model to Q8_0 and saved as ./salamandra-2b-instruct_Q8_0.gguf.\n"
410
+ ]
411
+ }
412
+ ],
413
+ "source": [
414
+ "# Quantize the models\n",
415
+ "for quant in quantization_types:\n",
416
+ " quantize_model(\n",
417
+ " quantization_type=quant,\n",
418
+ " base_model=base_model,\n",
419
+ " base_model_name=base_model_name,\n",
420
+ " path_to_llamacpp=path_to_llamacpp,\n",
421
+ " imatrix_path=imatrix_path,\n",
422
+ " use_leave_output_tensor=use_leave_output_tensor,\n",
423
+ " )"
424
+ ]
425
+ },
426
+ {
427
+ "cell_type": "code",
428
+ "execution_count": 16,
429
+ "metadata": {},
430
+ "outputs": [
431
+ {
432
+ "name": "stdout",
433
+ "output_type": "stream",
434
+ "text": [
435
+ "Running command: /Users/macdev/Downloads/build/bin/llama-perplexity -m salamandra-2b-instruct_IQ2_M.gguf -f ppl_test_data.txt --perplexity --ctx-size 8192 --rope-freq-base 10000.0 --repeat-penalty 1.2 --threads 15 --batch-size 512 --ubatch-size 128 > perplexity_IQ2_M.txt 2>&1\n",
436
+ "Running command: /Users/macdev/Downloads/build/bin/llama-perplexity -m salamandra-2b-instruct_IQ3_M.gguf -f ppl_test_data.txt --perplexity --ctx-size 8192 --rope-freq-base 10000.0 --repeat-penalty 1.2 --threads 15 --batch-size 512 --ubatch-size 128 > perplexity_IQ3_M.txt 2>&1\n",
437
+ "Running command: /Users/macdev/Downloads/build/bin/llama-perplexity -m salamandra-2b-instruct_IQ4_NL.gguf -f ppl_test_data.txt --perplexity --ctx-size 8192 --rope-freq-base 10000.0 --repeat-penalty 1.2 --threads 15 --batch-size 512 --ubatch-size 128 > perplexity_IQ4_NL.txt 2>&1\n",
438
+ "Running command: /Users/macdev/Downloads/build/bin/llama-perplexity -m salamandra-2b-instruct_IQ4_XS.gguf -f ppl_test_data.txt --perplexity --ctx-size 8192 --rope-freq-base 10000.0 --repeat-penalty 1.2 --threads 15 --batch-size 512 --ubatch-size 128 > perplexity_IQ4_XS.txt 2>&1\n",
439
+ "Running command: /Users/macdev/Downloads/build/bin/llama-perplexity -m salamandra-2b-instruct_Q3_K_L.gguf -f ppl_test_data.txt --perplexity --ctx-size 8192 --rope-freq-base 10000.0 --repeat-penalty 1.2 --threads 15 --batch-size 512 --ubatch-size 128 > perplexity_Q3_K_L.txt 2>&1\n",
440
+ "Running command: /Users/macdev/Downloads/build/bin/llama-perplexity -m salamandra-2b-instruct_Q3_K_M.gguf -f ppl_test_data.txt --perplexity --ctx-size 8192 --rope-freq-base 10000.0 --repeat-penalty 1.2 --threads 15 --batch-size 512 --ubatch-size 128 > perplexity_Q3_K_M.txt 2>&1\n",
441
+ "Running command: /Users/macdev/Downloads/build/bin/llama-perplexity -m salamandra-2b-instruct_Q4_K_M.gguf -f ppl_test_data.txt --perplexity --ctx-size 8192 --rope-freq-base 10000.0 --repeat-penalty 1.2 --threads 15 --batch-size 512 --ubatch-size 128 > perplexity_Q4_K_M.txt 2>&1\n",
442
+ "Running command: /Users/macdev/Downloads/build/bin/llama-perplexity -m salamandra-2b-instruct_Q4_K_S.gguf -f ppl_test_data.txt --perplexity --ctx-size 8192 --rope-freq-base 10000.0 --repeat-penalty 1.2 --threads 15 --batch-size 512 --ubatch-size 128 > perplexity_Q4_K_S.txt 2>&1\n",
443
+ "Running command: /Users/macdev/Downloads/build/bin/llama-perplexity -m salamandra-2b-instruct_Q5_K_M.gguf -f ppl_test_data.txt --perplexity --ctx-size 8192 --rope-freq-base 10000.0 --repeat-penalty 1.2 --threads 15 --batch-size 512 --ubatch-size 128 > perplexity_Q5_K_M.txt 2>&1\n",
444
+ "Running command: /Users/macdev/Downloads/build/bin/llama-perplexity -m salamandra-2b-instruct_Q5_K_S.gguf -f ppl_test_data.txt --perplexity --ctx-size 8192 --rope-freq-base 10000.0 --repeat-penalty 1.2 --threads 15 --batch-size 512 --ubatch-size 128 > perplexity_Q5_K_S.txt 2>&1\n",
445
+ "Running command: /Users/macdev/Downloads/build/bin/llama-perplexity -m salamandra-2b-instruct_Q6_K.gguf -f ppl_test_data.txt --perplexity --ctx-size 8192 --rope-freq-base 10000.0 --repeat-penalty 1.2 --threads 15 --batch-size 512 --ubatch-size 128 > perplexity_Q6_K.txt 2>&1\n",
446
+ "Running command: /Users/macdev/Downloads/build/bin/llama-perplexity -m salamandra-2b-instruct_Q8_0.gguf -f ppl_test_data.txt --perplexity --ctx-size 8192 --rope-freq-base 10000.0 --repeat-penalty 1.2 --threads 15 --batch-size 512 --ubatch-size 128 > perplexity_Q8_0.txt 2>&1\n"
447
+ ]
448
+ }
449
+ ],
450
+ "source": [
451
+ "# Measure perplexity for each quantized model\n",
452
+ "perplexity_results = dict()\n",
453
+ "perplexity_results[base_precision] = base_perplexity\n",
454
+ "for quant in quantization_types:\n",
455
+ " calculated_perplexity_recently = True\n",
456
+ " \n",
457
+ " model = f\"{base_model_name}_{quant}.gguf\"\n",
458
+ " output_file = f\"perplexity_{quant}.txt\"\n",
459
+ "\n",
460
+ " command = build_command(model, output_file, ppl_file, config_params=config_params, threads=threads, batch_size=batch_size, ubatch_size= ubatch_size)\n",
461
+ " output = run_command(command)\n",
462
+ "\n",
463
+ " perplexity = extract_perplexity(output)\n",
464
+ " perplexity_results[quant] = perplexity"
465
+ ]
466
+ },
467
+ {
468
+ "cell_type": "code",
469
+ "execution_count": null,
470
+ "metadata": {},
471
+ "outputs": [],
472
+ "source": [
473
+ "# load previous measurements if we didnt just measure perplexity for each quantized model\n",
474
+ "if not calculated_perplexity_recently:\n",
475
+ " perplexity_results = dict()\n",
476
+ " perplexity_results[base_precision] = base_perplexity\n",
477
+ "\n",
478
+ " for quant in quantization_types:\n",
479
+ " output_file = f\"perplexity_{quant}.txt\"\n",
480
+ " try:\n",
481
+ " with open(output_file, 'r') as file:\n",
482
+ " output = file.read()\n",
483
+ " perplexity = extract_perplexity(output)\n",
484
+ " except FileNotFoundError:\n",
485
+ " print(f\"Output file {output_file} not found.\")\n",
486
+ " perplexity = None\n",
487
+ "\n",
488
+ " perplexity_results[quant] = perplexity\n",
489
+ "\n",
490
+ " # Calculate ln(PPL(Q)/PPL(fp16)) and generate the table\n",
491
+ " print(\"\\nPerplexity Comparison Table:\")\n",
492
+ " print(f\"{'Quantization Type':<20} {'PPL(Q)':<10} {'ln(PPL(Q)/PPL(fp16))':<25}\")\n",
493
+ " print(\"=\" * 55)\n",
494
+ " for quant, ppl in perplexity_results.items():\n",
495
+ " if ppl and base_perplexity:\n",
496
+ " ln_ratio = round(math.log(ppl / base_perplexity), 6)\n",
497
+ " print(f\"{quant:<20} {ppl:<10} {ln_ratio:<25}\")\n",
498
+ "\n",
499
+ " print(perplexity_results)\n"
500
+ ]
501
+ },
502
+ {
503
+ "cell_type": "code",
504
+ "execution_count": null,
505
+ "metadata": {},
506
+ "outputs": [],
507
+ "source": [
508
+ "# Calculate ln(PPL(Q)/PPL(fp16)) and generate the table\n",
509
+ "print(\"\\nPerplexity Comparison Table:\")\n",
510
+ "print(f\"{'Quantization Type':<20} {'PPL(Q)':<10} {'ln(PPL(Q)/PPL(fp16))':<25}\")\n",
511
+ "print(\"=\" * 55)\n",
512
+ "for quant, ppl in perplexity_results.items():\n",
513
+ " if ppl and base_perplexity:\n",
514
+ " ln_ratio = round(math.log(ppl / base_perplexity), 6)\n",
515
+ " print(f\"{quant:<20} {ppl:<10} {ln_ratio:<25}\")"
516
+ ]
517
+ },
518
+ {
519
+ "cell_type": "code",
520
+ "execution_count": 18,
521
+ "metadata": {},
522
+ "outputs": [
523
+ {
524
+ "name": "stdout",
525
+ "output_type": "stream",
526
+ "text": [
527
+ "\n",
528
+ "Perplexity Comparison Table:\n",
529
+ "Quantization Type PPL(Q) ln(PPL(Q)/PPL(fp16)) \n",
530
+ "=======================================================\n",
531
+ "bf16 15.3799 0.0 \n",
532
+ "IQ2_S 25.3893 0.501266 \n",
533
+ "IQ2_M 21.6684 0.342794 \n",
534
+ "IQ3_M 16.774 0.086769 \n",
535
+ "IQ4_NL 15.9602 0.037037 \n",
536
+ "IQ4_XS 15.9591 0.036968 \n",
537
+ "Q3_K_L 16.5067 0.070705 \n",
538
+ "Q3_K_M 16.8567 0.091687 \n",
539
+ "Q4_K_M 15.8651 0.03106 \n",
540
+ "Q4_K_S 15.9346 0.035431 \n",
541
+ "Q5_K_M 15.4746 0.006139 \n",
542
+ "Q5_K_S 15.4901 0.00714 \n",
543
+ "Q6_K 15.3961 0.001053 \n",
544
+ "Q8_0 15.3831 0.000208 \n",
545
+ "{'bf16': 15.3799, 'IQ2_S': 25.3893, 'IQ2_M': 21.6684, 'IQ3_M': 16.774, 'IQ4_NL': 15.9602, 'IQ4_XS': 15.9591, 'Q3_K_L': 16.5067, 'Q3_K_M': 16.8567, 'Q4_K_M': 15.8651, 'Q4_K_S': 15.9346, 'Q5_K_M': 15.4746, 'Q5_K_S': 15.4901, 'Q6_K': 15.3961, 'Q8_0': 15.3831}\n"
546
+ ]
547
+ }
548
+ ],
549
+ "source": [
550
+ "perplexity_results = dict()\n",
551
+ "perplexity_results[base_precision] = base_perplexity\n",
552
+ "\n",
553
+ "for quant in quantization_types:\n",
554
+ " output_file = f\"perplexity_{quant}.txt\"\n",
555
+ " try:\n",
556
+ " with open(output_file, 'r') as file:\n",
557
+ " output = file.read()\n",
558
+ " perplexity = extract_perplexity(output)\n",
559
+ " except FileNotFoundError:\n",
560
+ " print(f\"Output file {output_file} not found.\")\n",
561
+ " perplexity = None\n",
562
+ "\n",
563
+ " perplexity_results[quant] = perplexity\n",
564
+ "\n",
565
+ "# Calculate ln(PPL(Q)/PPL(fp16)) and generate the table\n",
566
+ "print(\"\\nPerplexity Comparison Table:\")\n",
567
+ "print(f\"{'Quantization Type':<20} {'PPL(Q)':<10} {'ln(PPL(Q)/PPL(fp16))':<25}\")\n",
568
+ "print(\"=\" * 55)\n",
569
+ "for quant, ppl in perplexity_results.items():\n",
570
+ " if ppl and base_perplexity:\n",
571
+ " ln_ratio = round(math.log(ppl / base_perplexity), 6)\n",
572
+ " print(f\"{quant:<20} {ppl:<10} {ln_ratio:<25}\")\n",
573
+ "\n",
574
+ "print(perplexity_results)\n"
575
+ ]
576
+ }
577
+ ],
578
+ "metadata": {
579
+ "kernelspec": {
580
+ "display_name": "venv",
581
+ "language": "python",
582
+ "name": "python3"
583
+ },
584
+ "language_info": {
585
+ "codemirror_mode": {
586
+ "name": "ipython",
587
+ "version": 3
588
+ },
589
+ "file_extension": ".py",
590
+ "mimetype": "text/x-python",
591
+ "name": "python",
592
+ "nbconvert_exporter": "python",
593
+ "pygments_lexer": "ipython3",
594
+ "version": "3.12.0"
595
+ }
596
+ },
597
+ "nbformat": 4,
598
+ "nbformat_minor": 2
599
+ }