build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0 llama_model_loader: loaded meta data with 35 key-value pairs and 219 tensors from salamandra-2b-instruct_Q4_K_S.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.size_label str = 2.3B llama_model_loader: - kv 3: general.license str = apache-2.0 llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"] llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"... llama_model_loader: - kv 6: llama.block_count u32 = 24 llama_model_loader: - kv 7: llama.context_length u32 = 8192 llama_model_loader: - kv 8: llama.embedding_length u32 = 2048 llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440 llama_model_loader: - kv 10: llama.attention.head_count u32 = 16 llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16 llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 14: general.file_type u32 = 14 llama_model_loader: - kv 15: llama.vocab_size u32 = 256000 llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128 llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true llama_model_loader: - kv 18: tokenizer.ggml.model str = llama llama_model_loader: - kv 19: tokenizer.ggml.pre str = default llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["", "", "", "", "<|... llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00... llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ... llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0 llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{... llama_model_loader: - kv 30: general.quantization_version u32 = 2 llama_model_loader: - kv 31: quantize.imatrix.file str = imatrix/oscar/imatrix.dat llama_model_loader: - kv 32: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 168 llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 44176 llama_model_loader: - type f32: 49 tensors llama_model_loader: - type q5_0: 21 tensors llama_model_loader: - type q5_1: 3 tensors llama_model_loader: - type q4_K: 141 tensors llama_model_loader: - type q5_K: 4 tensors llama_model_loader: - type bf16: 1 tensors llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect llm_load_vocab: special tokens cache size = 104 llm_load_vocab: token to piece cache size = 1.8842 MB llm_load_print_meta: format = GGUF V3 (latest) llm_load_print_meta: arch = llama llm_load_print_meta: vocab type = SPM llm_load_print_meta: n_vocab = 256000 llm_load_print_meta: n_merges = 0 llm_load_print_meta: vocab_only = 0 llm_load_print_meta: n_ctx_train = 8192 llm_load_print_meta: n_embd = 2048 llm_load_print_meta: n_layer = 24 llm_load_print_meta: n_head = 16 llm_load_print_meta: n_head_kv = 16 llm_load_print_meta: n_rot = 128 llm_load_print_meta: n_swa = 0 llm_load_print_meta: n_embd_head_k = 128 llm_load_print_meta: n_embd_head_v = 128 llm_load_print_meta: n_gqa = 1 llm_load_print_meta: n_embd_k_gqa = 2048 llm_load_print_meta: n_embd_v_gqa = 2048 llm_load_print_meta: f_norm_eps = 0.0e+00 llm_load_print_meta: f_norm_rms_eps = 1.0e-05 llm_load_print_meta: f_clamp_kqv = 0.0e+00 llm_load_print_meta: f_max_alibi_bias = 0.0e+00 llm_load_print_meta: f_logit_scale = 0.0e+00 llm_load_print_meta: n_ff = 5440 llm_load_print_meta: n_expert = 0 llm_load_print_meta: n_expert_used = 0 llm_load_print_meta: causal attn = 1 llm_load_print_meta: pooling type = 0 llm_load_print_meta: rope type = 0 llm_load_print_meta: rope scaling = linear llm_load_print_meta: freq_base_train = 10000.0 llm_load_print_meta: freq_scale_train = 1 llm_load_print_meta: n_ctx_orig_yarn = 8192 llm_load_print_meta: rope_finetuned = unknown llm_load_print_meta: ssm_d_conv = 0 llm_load_print_meta: ssm_d_inner = 0 llm_load_print_meta: ssm_d_state = 0 llm_load_print_meta: ssm_dt_rank = 0 llm_load_print_meta: ssm_dt_b_c_rms = 0 llm_load_print_meta: model type = ?B llm_load_print_meta: model ftype = Q4_K - Small llm_load_print_meta: model params = 2.25 B llm_load_print_meta: model size = 1.92 GiB (7.31 BPW) llm_load_print_meta: general.name = n/a llm_load_print_meta: BOS token = 1 '' llm_load_print_meta: EOS token = 2 '' llm_load_print_meta: UNK token = 0 '' llm_load_print_meta: PAD token = 0 '' llm_load_print_meta: LF token = 145 '<0x0A>' llm_load_print_meta: EOT token = 5 '<|im_end|>' llm_load_print_meta: EOG token = 2 '' llm_load_print_meta: EOG token = 5 '<|im_end|>' llm_load_print_meta: max token length = 72 llm_load_tensors: ggml ctx size = 0.20 MiB llm_load_tensors: offloading 24 repeating layers to GPU llm_load_tensors: offloading non-repeating layers to GPU llm_load_tensors: offloaded 25/25 layers to GPU llm_load_tensors: Metal buffer size = 1963.82 MiB llm_load_tensors: CPU buffer size = 281.25 MiB ..................................... llama_new_context_with_model: n_ctx = 8192 llama_new_context_with_model: n_batch = 512 llama_new_context_with_model: n_ubatch = 128 llama_new_context_with_model: flash_attn = 0 llama_new_context_with_model: freq_base = 10000.0 llama_new_context_with_model: freq_scale = 1 ggml_metal_init: allocating ggml_metal_init: found device: Apple M3 Max ggml_metal_init: picking default device: Apple M3 Max ggml_metal_init: using embedded metal library ggml_metal_init: GPU name: Apple M3 Max ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009) ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003) ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001) ggml_metal_init: simdgroup reduction support = true ggml_metal_init: simdgroup matrix mul. support = true ggml_metal_init: hasUnifiedMemory = true ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB llama_new_context_with_model: CPU output buffer size = 0.98 MiB llama_new_context_with_model: Metal compute buffer size = 72.00 MiB llama_new_context_with_model: CPU compute buffer size = 125.00 MiB llama_new_context_with_model: graph nodes = 774 llama_new_context_with_model: graph splits = 3 common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable) system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 | perplexity: tokenizing the input .. perplexity: tokenization took 3213.6 ms perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1 perplexity: 10.52 seconds per pass - ETA 23.48 minutes [1]17.5477,[2]17.9221,[3]16.2638,[4]16.0589,[5]15.3365,[6]14.8584,[7]15.7493,[8]15.2416,[9]14.9662,[10]14.2574,[11]14.8994,[12]14.9625,[13]16.0414,[14]16.3210,[15]16.3080,[16]16.8530,[17]17.1502,[18]17.0427,[19]17.0853,[20]17.4004,[21]17.4331,[22]15.3983,[23]15.5808,[24]15.2009,[25]14.6792,[26]14.2320,[27]14.0352,[28]13.8592,[29]13.8091,[30]13.6025,[31]13.8428,[32]13.9538,[33]14.4326,[34]14.7368,[35]15.0448,[36]14.8038,[37]14.7882,[38]14.8626,[39]14.7051,[40]14.7370,[41]14.7107,[42]14.5182,[43]14.4627,[44]14.6275,[45]14.8360,[46]14.6871,[47]14.9297,[48]15.0471,[49]15.3325,[50]15.6184,[51]15.6550,[52]15.8727,[53]16.1975,[54]16.5253,[55]16.6375,[56]16.4689,[57]16.3747,[58]16.0970,[59]15.9877,[60]15.7936,[61]15.8436,[62]15.9836,[63]16.1730,[64]16.2348,[65]16.2632,[66]16.4551,[67]16.4280,[68]16.3158,[69]16.1721,[70]16.0645,[71]16.0588,[72]16.0047,[73]16.0157,[74]15.9581,[75]15.9404,[76]15.8797,[77]15.9372,[78]15.9354,[79]15.9450,[80]15.9817,[81]15.6790,[82]15.6550,[83]15.5241,[84]15.5590,[85]15.6100,[86]15.8073,[87]15.8330,[88]15.9890,[89]16.0422,[90]16.1685,[91]16.2271,[92]16.0607,[93]16.1260,[94]16.1120,[95]16.2495,[96]16.4435,[97]16.5212,[98]16.6202,[99]16.7698,[100]16.8107,[101]16.8379,[102]16.7980,[103]16.7689,[104]16.7532,[105]16.7382,[106]16.6067,[107]16.4755,[108]16.5369,[109]16.5549,[110]16.4654,[111]16.4273,[112]16.2783,[113]16.1354,[114]16.1296,[115]16.1034,[116]16.1114,[117]16.0036,[118]15.8722,[119]15.8647,[120]15.9249,[121]15.9399,[122]15.9622,[123]15.9989,[124]16.0173,[125]16.0118,[126]16.0367,[127]16.0617,[128]16.1422,[129]16.1329,[130]16.1099,[131]16.1679,[132]16.1440,[133]16.0872,[134]15.9346, Final estimate: PPL = 15.9346 +/- 0.06504 llama_perf_context_print: load time = 1326.96 ms llama_perf_context_print: prompt eval time = 1377983.72 ms / 1097728 tokens ( 1.26 ms per token, 796.62 tokens per second) llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second) llama_perf_context_print: total time = 1417581.05 ms / 1097729 tokens ggml_metal_free: deallocating