build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0 llama_model_loader: loaded meta data with 35 key-value pairs and 219 tensors from salamandra-2b-instruct_Q5_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.size_label str = 2.3B llama_model_loader: - kv 3: general.license str = apache-2.0 llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"] llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"... llama_model_loader: - kv 6: llama.block_count u32 = 24 llama_model_loader: - kv 7: llama.context_length u32 = 8192 llama_model_loader: - kv 8: llama.embedding_length u32 = 2048 llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440 llama_model_loader: - kv 10: llama.attention.head_count u32 = 16 llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16 llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 14: general.file_type u32 = 17 llama_model_loader: - kv 15: llama.vocab_size u32 = 256000 llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128 llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true llama_model_loader: - kv 18: tokenizer.ggml.model str = llama llama_model_loader: - kv 19: tokenizer.ggml.pre str = default llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["", "", "", "", "<|... llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00... llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ... llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 0 llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = true llama_model_loader: - kv 28: tokenizer.ggml.add_eos_token bool = false llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if not date_string is defined %}{... llama_model_loader: - kv 30: general.quantization_version u32 = 2 llama_model_loader: - kv 31: quantize.imatrix.file str = imatrix/oscar/imatrix.dat llama_model_loader: - kv 32: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 168 llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 44176 llama_model_loader: - type f32: 49 tensors llama_model_loader: - type q5_1: 12 tensors llama_model_loader: - type q8_0: 12 tensors llama_model_loader: - type q5_K: 133 tensors llama_model_loader: - type q6_K: 12 tensors llama_model_loader: - type bf16: 1 tensors llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect llm_load_vocab: special tokens cache size = 104 llm_load_vocab: token to piece cache size = 1.8842 MB llm_load_print_meta: format = GGUF V3 (latest) llm_load_print_meta: arch = llama llm_load_print_meta: vocab type = SPM llm_load_print_meta: n_vocab = 256000 llm_load_print_meta: n_merges = 0 llm_load_print_meta: vocab_only = 0 llm_load_print_meta: n_ctx_train = 8192 llm_load_print_meta: n_embd = 2048 llm_load_print_meta: n_layer = 24 llm_load_print_meta: n_head = 16 llm_load_print_meta: n_head_kv = 16 llm_load_print_meta: n_rot = 128 llm_load_print_meta: n_swa = 0 llm_load_print_meta: n_embd_head_k = 128 llm_load_print_meta: n_embd_head_v = 128 llm_load_print_meta: n_gqa = 1 llm_load_print_meta: n_embd_k_gqa = 2048 llm_load_print_meta: n_embd_v_gqa = 2048 llm_load_print_meta: f_norm_eps = 0.0e+00 llm_load_print_meta: f_norm_rms_eps = 1.0e-05 llm_load_print_meta: f_clamp_kqv = 0.0e+00 llm_load_print_meta: f_max_alibi_bias = 0.0e+00 llm_load_print_meta: f_logit_scale = 0.0e+00 llm_load_print_meta: n_ff = 5440 llm_load_print_meta: n_expert = 0 llm_load_print_meta: n_expert_used = 0 llm_load_print_meta: causal attn = 1 llm_load_print_meta: pooling type = 0 llm_load_print_meta: rope type = 0 llm_load_print_meta: rope scaling = linear llm_load_print_meta: freq_base_train = 10000.0 llm_load_print_meta: freq_scale_train = 1 llm_load_print_meta: n_ctx_orig_yarn = 8192 llm_load_print_meta: rope_finetuned = unknown llm_load_print_meta: ssm_d_conv = 0 llm_load_print_meta: ssm_d_inner = 0 llm_load_print_meta: ssm_d_state = 0 llm_load_print_meta: ssm_dt_rank = 0 llm_load_print_meta: ssm_dt_b_c_rms = 0 llm_load_print_meta: model type = ?B llm_load_print_meta: model ftype = Q5_K - Medium llm_load_print_meta: model params = 2.25 B llm_load_print_meta: model size = 2.14 GiB (8.18 BPW) llm_load_print_meta: general.name = n/a llm_load_print_meta: BOS token = 1 '' llm_load_print_meta: EOS token = 2 '' llm_load_print_meta: UNK token = 0 '' llm_load_print_meta: PAD token = 0 '' llm_load_print_meta: LF token = 145 '<0x0A>' llm_load_print_meta: EOT token = 5 '<|im_end|>' llm_load_print_meta: EOG token = 2 '' llm_load_print_meta: EOG token = 5 '<|im_end|>' llm_load_print_meta: max token length = 72 llm_load_tensors: ggml ctx size = 0.20 MiB llm_load_tensors: offloading 24 repeating layers to GPU llm_load_tensors: offloading non-repeating layers to GPU llm_load_tensors: offloaded 25/25 layers to GPU llm_load_tensors: Metal buffer size = 2196.24 MiB llm_load_tensors: CPU buffer size = 343.75 MiB ......................................... llama_new_context_with_model: n_ctx = 8192 llama_new_context_with_model: n_batch = 512 llama_new_context_with_model: n_ubatch = 128 llama_new_context_with_model: flash_attn = 0 llama_new_context_with_model: freq_base = 10000.0 llama_new_context_with_model: freq_scale = 1 ggml_metal_init: allocating ggml_metal_init: found device: Apple M3 Max ggml_metal_init: picking default device: Apple M3 Max ggml_metal_init: using embedded metal library ggml_metal_init: GPU name: Apple M3 Max ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009) ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003) ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001) ggml_metal_init: simdgroup reduction support = true ggml_metal_init: simdgroup matrix mul. support = true ggml_metal_init: hasUnifiedMemory = true ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB llama_new_context_with_model: CPU output buffer size = 0.98 MiB llama_new_context_with_model: Metal compute buffer size = 72.00 MiB llama_new_context_with_model: CPU compute buffer size = 125.00 MiB llama_new_context_with_model: graph nodes = 774 llama_new_context_with_model: graph splits = 3 common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable) system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 | perplexity: tokenizing the input .. perplexity: tokenization took 2711.28 ms perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1 perplexity: 10.39 seconds per pass - ETA 23.20 minutes [1]17.2226,[2]17.3542,[3]15.7985,[4]15.6000,[5]14.9544,[6]14.5082,[7]15.3873,[8]14.8841,[9]14.6010,[10]13.8990,[11]14.5178,[12]14.5725,[13]15.6016,[14]15.8676,[15]15.8517,[16]16.3829,[17]16.6752,[18]16.5774,[19]16.6203,[20]16.9249,[21]16.9643,[22]14.9799,[23]15.1548,[24]14.7848,[25]14.2787,[26]13.8419,[27]13.6523,[28]13.4800,[29]13.4302,[30]13.2275,[31]13.4596,[32]13.5639,[33]14.0287,[34]14.3274,[35]14.6264,[36]14.3958,[37]14.3842,[38]14.4594,[39]14.3099,[40]14.3445,[41]14.3211,[42]14.1361,[43]14.0849,[44]14.2477,[45]14.4500,[46]14.3055,[47]14.5382,[48]14.6503,[49]14.9219,[50]15.1939,[51]15.2276,[52]15.4355,[53]15.7492,[54]16.0619,[55]16.1694,[56]16.0056,[57]15.9105,[58]15.6455,[59]15.5409,[60]15.3517,[61]15.4022,[62]15.5348,[63]15.7174,[64]15.7781,[65]15.8056,[66]15.9889,[67]15.9635,[68]15.8533,[69]15.7140,[70]15.6085,[71]15.6036,[72]15.5481,[73]15.5581,[74]15.5016,[75]15.4753,[76]15.4155,[77]15.4734,[78]15.4727,[79]15.4807,[80]15.5167,[81]15.2324,[82]15.2101,[83]15.0829,[84]15.1149,[85]15.1614,[86]15.3514,[87]15.3756,[88]15.5277,[89]15.5809,[90]15.7045,[91]15.7595,[92]15.6003,[93]15.6652,[94]15.6532,[95]15.7871,[96]15.9751,[97]16.0495,[98]16.1437,[99]16.2805,[100]16.3214,[101]16.3474,[102]16.3094,[103]16.2810,[104]16.2648,[105]16.2514,[106]16.1249,[107]15.9989,[108]16.0583,[109]16.0749,[110]15.9885,[111]15.9532,[112]15.8075,[113]15.6698,[114]15.6647,[115]15.6397,[116]15.6484,[117]15.5437,[118]15.4168,[119]15.4099,[120]15.4687,[121]15.4837,[122]15.5060,[123]15.5413,[124]15.5575,[125]15.5520,[126]15.5771,[127]15.6011,[128]15.6786,[129]15.6687,[130]15.6461,[131]15.7018,[132]15.6773,[133]15.6226,[134]15.4746, Final estimate: PPL = 15.4746 +/- 0.06294 llama_perf_context_print: load time = 1424.89 ms llama_perf_context_print: prompt eval time = 1380468.79 ms / 1097728 tokens ( 1.26 ms per token, 795.18 tokens per second) llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second) llama_perf_context_print: total time = 1421207.09 ms / 1097729 tokens ggml_metal_free: deallocating