Robot Jung commited on
Commit
b275607
1 Parent(s): 8a38621

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md CHANGED
@@ -1,3 +1,71 @@
1
  ---
2
  license: creativeml-openrail-m
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: creativeml-openrail-m
3
+ language:
4
+ - en
5
+ tags:
6
+ - stable-diffusion
7
+ - diffusers
8
+ - text-to-image
9
  ---
10
+
11
+ # SemiRealMix
12
+
13
+ The result of many merges aimed at making semi-realistic human images.
14
+
15
+ I use the following options to get good generation results:
16
+
17
+ #### Prompt:
18
+
19
+ delicate, masterpiece, best shadow, (1 girl:1.3), (korean girl:1.2), (from side:1.2), (from below:0.5), (photorealistic:1.5), extremely detailed skin, studio, beige background, warm soft light, low contrast, head tilt
20
+
21
+ #### Negative prompt:
22
+
23
+ (worst quality, low quality:1.4), nsfw, nude, (loli, child, infant, baby:1.5), jewely, (hard light:1.5), back light, spot light, hight contrast, (eyelid:1.3), outdoor, monochrome
24
+
25
+
26
+ Sampler: DPM++ SDE Karras
27
+
28
+ CFG Scale: 7
29
+
30
+ Steps: 20
31
+
32
+ Size: 512x768
33
+
34
+ Denoising strength: 0.5, Hires upscale: 2, Hires upscaler: R-ESRGAN 4x+ Anime6B, Eta: 0.2
35
+
36
+ Clip skip: 2
37
+
38
+ Base Model : SD 1.5
39
+
40
+ VAE: vae-ft-mse-840000-ema-pruned
41
+
42
+ Use xformers : True
43
+
44
+ ## 🧨 Diffusers
45
+
46
+ This model can be used just like any other Stable Diffusion model. For more information,
47
+ please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
48
+
49
+ You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX]().
50
+
51
+ ```python
52
+ from diffusers import StableDiffusionPipeline
53
+ import torch
54
+
55
+ model_id = "andite/anything-v4.0"
56
+ pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
57
+ pipe = pipe.to("cuda")
58
+
59
+ prompt = "1girl"
60
+ image = pipe(prompt).images[0]
61
+
62
+ image.save("./output.png")
63
+ ```
64
+
65
+ ## Examples:
66
+
67
+ Here are some examples of images generated using this model:
68
+
69
+
70
+
71
+