File size: 15,549 Bytes
7d33b6e
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f51641db880>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f51641d6000>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688738953763074181, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2hvHPly5bz16Xvw+2hvHPly5bz16Xvw+2hvHPly5bz16Xvw+2hvHPly5bz16Xvw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKYEpP7AvaD5GguA+PXocv7fbCj8fFf0+Q6Cqv/Zevz+ZD9Q/OfaOP/DDaj/I+AE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADaG8c+XLlvPXpe/D50Faw8ulytO20CJzzaG8c+XLlvPXpe/D50Faw8ulytO20CJzzaG8c+XLlvPXpe/D50Faw8ulytO20CJzzaG8c+XLlvPXpe/D50Faw8ulytO20CJzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.38888437 0.05852638 0.4929083 ]\n [0.38888437 0.05852638 0.4929083 ]\n [0.38888437 0.05852638 0.4929083 ]\n [0.38888437 0.05852638 0.4929083 ]]", "desired_goal": "[[ 0.6621271   0.22674441  0.4384939 ]\n [-0.6112402   0.5424151   0.49430177]\n [-1.3330158   1.4950855   1.656726  ]\n [ 1.1168891   0.91705227  0.50770235]]", "observation": "[[0.38888437 0.05852638 0.4929083  0.02100632 0.00529059 0.01019345]\n [0.38888437 0.05852638 0.4929083  0.02100632 0.00529059 0.01019345]\n [0.38888437 0.05852638 0.4929083  0.02100632 0.00529059 0.01019345]\n [0.38888437 0.05852638 0.4929083  0.02100632 0.00529059 0.01019345]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYtCkvS9A8rzHWUk+ypz+O99EJT0r8to9gECQPR8SWD0PI9I9itk7vbKiIT2ltZM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[-0.08047558 -0.02957162  0.19663154]\n [ 0.00777016  0.04034888  0.10690721]\n [ 0.07043552  0.05275166  0.10260593]\n [-0.04586176  0.0394618   0.2884952 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIea7vw0GC87+UhpRSlIwBbJRLMowBdJRHQKfmDiGWUr11fZQoaAZoCWgPQwh5OleUEgL8v5SGlFKUaBVLMmgWR0Cn5cy/bj95dX2UKGgGaAloD0MIz/i+uFRl9b+UhpRSlGgVSzJoFkdAp+V5K6FuenV9lChoBmgJaA9DCHdIMUCiif2/lIaUUpRoFUsyaBZHQKflJQAuIyl1fZQoaAZoCWgPQwj8AQ8MILz3v5SGlFKUaBVLMmgWR0Cn5vky+HrRdX2UKGgGaAloD0MIG0zD8BFRA8CUhpRSlGgVSzJoFkdAp+a31DjR2XV9lChoBmgJaA9DCC1A22rWWQLAlIaUUpRoFUsyaBZHQKfmZEdeY2N1fZQoaAZoCWgPQwjct1onLofyv5SGlFKUaBVLMmgWR0Cn5g/io86ndX2UKGgGaAloD0MI8db5t8u+AMCUhpRSlGgVSzJoFkdAp+fkJrtVrHV9lChoBmgJaA9DCNNKIZBL/ALAlIaUUpRoFUsyaBZHQKfno7kGRmt1fZQoaAZoCWgPQwhw7q8e9237v5SGlFKUaBVLMmgWR0Cn51CvPkaNdX2UKGgGaAloD0MIkEyHTs/79r+UhpRSlGgVSzJoFkdAp+b8c2itaXV9lChoBmgJaA9DCJvj3Cbcq/O/lIaUUpRoFUsyaBZHQKfowl54W1t1fZQoaAZoCWgPQwhmpN5TOc0AwJSGlFKUaBVLMmgWR0Cn6IDzZpSKdX2UKGgGaAloD0MInj9tVKejBcCUhpRSlGgVSzJoFkdAp+gtUKiPAHV9lChoBmgJaA9DCC+kw0MY//+/lIaUUpRoFUsyaBZHQKfn2ObRWtF1fZQoaAZoCWgPQwjBkUCDTf0EwJSGlFKUaBVLMmgWR0Cn6cQHJLdvdX2UKGgGaAloD0MIYfpeQ3Bc9r+UhpRSlGgVSzJoFkdAp+mC814xDnV9lChoBmgJaA9DCMxB0NGqlv6/lIaUUpRoFUsyaBZHQKfpL2oNutR1fZQoaAZoCWgPQwjItaFinL/+v5SGlFKUaBVLMmgWR0Cn6NsF+uvEdX2UKGgGaAloD0MIy7vqAfPQBcCUhpRSlGgVSzJoFkdAp+qrJwKjSHV9lChoBmgJaA9DCJHu5xTkhwLAlIaUUpRoFUsyaBZHQKfqadsBQvZ1fZQoaAZoCWgPQwjSOT/FceACwJSGlFKUaBVLMmgWR0Cn6hZd4VyndX2UKGgGaAloD0MISkVj7e8MBMCUhpRSlGgVSzJoFkdAp+nCC17Y03V9lChoBmgJaA9DCHWTGARW7gLAlIaUUpRoFUsyaBZHQKfrlGe+VTt1fZQoaAZoCWgPQwhMUMO3sO75v5SGlFKUaBVLMmgWR0Cn61L+5vtMdX2UKGgGaAloD0MIzy7f+rCeA8CUhpRSlGgVSzJoFkdAp+r/dsSCe3V9lChoBmgJaA9DCJi+1xAcJxDAlIaUUpRoFUsyaBZHQKfqq163RXx1fZQoaAZoCWgPQwh+x/DYz6L5v5SGlFKUaBVLMmgWR0Cn7IHk92X+dX2UKGgGaAloD0MI4QhSKXa0BMCUhpRSlGgVSzJoFkdAp+xAiqyWzHV9lChoBmgJaA9DCPvnacAgyQfAlIaUUpRoFUsyaBZHQKfr7PVNHpd1fZQoaAZoCWgPQwj9wFWeQBgAwJSGlFKUaBVLMmgWR0Cn65i8WbgCdX2UKGgGaAloD0MI58dfWtRnBcCUhpRSlGgVSzJoFkdAp+1r1K5CnnV9lChoBmgJaA9DCDYC8bp+IQHAlIaUUpRoFUsyaBZHQKftKm1IAfd1fZQoaAZoCWgPQwiKIM7DCQwCwJSGlFKUaBVLMmgWR0Cn7Nb8Nx2jdX2UKGgGaAloD0MIe6TBbW0h+L+UhpRSlGgVSzJoFkdAp+yCoMrmQ3V9lChoBmgJaA9DCKneGtgqwQXAlIaUUpRoFUsyaBZHQKfuU4d6syV1fZQoaAZoCWgPQwjBjZQtkjb/v5SGlFKUaBVLMmgWR0Cn7hI9cKPXdX2UKGgGaAloD0MI+ir52F1g/L+UhpRSlGgVSzJoFkdAp+2+zv7WNHV9lChoBmgJaA9DCNJzC12JgPK/lIaUUpRoFUsyaBZHQKftaoPTXrd1fZQoaAZoCWgPQwgRcXMqGYD3v5SGlFKUaBVLMmgWR0Cn7zpda+vhdX2UKGgGaAloD0MI8IXJVMEo+L+UhpRSlGgVSzJoFkdAp+75AY51eXV9lChoBmgJaA9DCNfZkH9m8AHAlIaUUpRoFUsyaBZHQKfupcRlHz91fZQoaAZoCWgPQwix/Pm2YKn0v5SGlFKUaBVLMmgWR0Cn7lGKAJ9idX2UKGgGaAloD0MIC+vGuyOj/r+UhpRSlGgVSzJoFkdAp/Av0K7ZnXV9lChoBmgJaA9DCMaFAyFZIAPAlIaUUpRoFUsyaBZHQKfv7pAUtZp1fZQoaAZoCWgPQwjhmGVPAlv4v5SGlFKUaBVLMmgWR0Cn75s3ZPEbdX2UKGgGaAloD0MICYfe4uH9/L+UhpRSlGgVSzJoFkdAp+9HKGL1mXV9lChoBmgJaA9DCD7qr1dY8Pu/lIaUUpRoFUsyaBZHQKfxGJqqOtJ1fZQoaAZoCWgPQwi2heelYqPyv5SGlFKUaBVLMmgWR0Cn8NdkSVW0dX2UKGgGaAloD0MIkq6ZfLMN9r+UhpRSlGgVSzJoFkdAp/CD2FnIyXV9lChoBmgJaA9DCCuE1VjCmvO/lIaUUpRoFUsyaBZHQKfwL3Zf2K51fZQoaAZoCWgPQwj3ViQmqOH+v5SGlFKUaBVLMmgWR0Cn8gRr8BMjdX2UKGgGaAloD0MI6SrdXWdD+L+UhpRSlGgVSzJoFkdAp/HDMs6JZXV9lChoBmgJaA9DCLcqieyDLP2/lIaUUpRoFUsyaBZHQKfxb961LJ11fZQoaAZoCWgPQwjUtmEUBO8AwJSGlFKUaBVLMmgWR0Cn8RuAy2x6dX2UKGgGaAloD0MIPfAxWHGq+7+UhpRSlGgVSzJoFkdAp/LpRl6JInV9lChoBmgJaA9DCEoH6/8cZgLAlIaUUpRoFUsyaBZHQKfyqBaLXMB1fZQoaAZoCWgPQwiT407pYN0HwJSGlFKUaBVLMmgWR0Cn8lSg5BC2dX2UKGgGaAloD0MItyQH7GpyAcCUhpRSlGgVSzJoFkdAp/IAOe8PF3V9lChoBmgJaA9DCFvQe2MIgAfAlIaUUpRoFUsyaBZHQKfz3u63AmB1fZQoaAZoCWgPQwjaqbncYCj3v5SGlFKUaBVLMmgWR0Cn8529US7HdX2UKGgGaAloD0MIL26jAbwFAcCUhpRSlGgVSzJoFkdAp/NKMglniHV9lChoBmgJaA9DCJnZ5zHKcwDAlIaUUpRoFUsyaBZHQKfy9fXPJJZ1fZQoaAZoCWgPQwjHLebnhqb9v5SGlFKUaBVLMmgWR0Cn9M0oa1kUdX2UKGgGaAloD0MIls0cklro9r+UhpRSlGgVSzJoFkdAp/SMBnzxw3V9lChoBmgJaA9DCJEPejarPv+/lIaUUpRoFUsyaBZHQKf0OTUy57R1fZQoaAZoCWgPQwg/H2XEBWADwJSGlFKUaBVLMmgWR0Cn8+TtCzC2dX2UKGgGaAloD0MIM2/Vdaim9r+UhpRSlGgVSzJoFkdAp/XCzcAR03V9lChoBmgJaA9DCKnaboJv+gDAlIaUUpRoFUsyaBZHQKf1gY9gWrR1fZQoaAZoCWgPQwhTA83n3C34v5SGlFKUaBVLMmgWR0Cn9S5R0lqrdX2UKGgGaAloD0MIJQLVP4ik/L+UhpRSlGgVSzJoFkdAp/TZ9oexOnV9lChoBmgJaA9DCHeiJCTS9gLAlIaUUpRoFUsyaBZHQKf3IbNKRMh1fZQoaAZoCWgPQwg6ArhZvNj7v5SGlFKUaBVLMmgWR0Cn9uD6N2kjdX2UKGgGaAloD0MIUmFsIciB/L+UhpRSlGgVSzJoFkdAp/aPS4OMEXV9lChoBmgJaA9DCI/hsZ/FUgLAlIaUUpRoFUsyaBZHQKf2O9lmOEN1fZQoaAZoCWgPQwh6/N6mP3v5v5SGlFKUaBVLMmgWR0Cn+Kdq+JxedX2UKGgGaAloD0MIqB5pcFub/b+UhpRSlGgVSzJoFkdAp/hm7SRbKXV9lChoBmgJaA9DCE5k5gKX5wXAlIaUUpRoFUsyaBZHQKf4FEb5uZV1fZQoaAZoCWgPQwiFeCReng74v5SGlFKUaBVLMmgWR0Cn98Df3vhIdX2UKGgGaAloD0MIgNJQo5Ak/L+UhpRSlGgVSzJoFkdAp/op+F10T3V9lChoBmgJaA9DCP8gkiHHtgDAlIaUUpRoFUsyaBZHQKf56SRr8BN1fZQoaAZoCWgPQwh9PPTdrYwAwJSGlFKUaBVLMmgWR0Cn+ZYxcmjTdX2UKGgGaAloD0MIDoRkARN49b+UhpRSlGgVSzJoFkdAp/lCo86mwnV9lChoBmgJaA9DCP1qDhDM8QXAlIaUUpRoFUsyaBZHQKf7uEgW8Ad1fZQoaAZoCWgPQwi4dw360jsAwJSGlFKUaBVLMmgWR0Cn+3evIOpbdX2UKGgGaAloD0MIscBXdOt18b+UhpRSlGgVSzJoFkdAp/skoF3Y+XV9lChoBmgJaA9DCAb0wp0L4/O/lIaUUpRoFUsyaBZHQKf60L4N7Sl1fZQoaAZoCWgPQwgbKsb5m9D5v5SGlFKUaBVLMmgWR0Cn/VT/IbOvdX2UKGgGaAloD0MIPGpMiLkk/b+UhpRSlGgVSzJoFkdAp/0UVrRBvHV9lChoBmgJaA9DCKxzDMher/m/lIaUUpRoFUsyaBZHQKf8wbG3nZF1fZQoaAZoCWgPQwh/2T15WCj9v5SGlFKUaBVLMmgWR0Cn/G6IvalDdX2UKGgGaAloD0MIgjY5fNIpAMCUhpRSlGgVSzJoFkdAp/7uLaVUuXV9lChoBmgJaA9DCCpz843ongDAlIaUUpRoFUsyaBZHQKf+rYOlO451fZQoaAZoCWgPQwi4lPPF3gv5v5SGlFKUaBVLMmgWR0Cn/ls8YAKfdX2UKGgGaAloD0MI9ntinSpf+7+UhpRSlGgVSzJoFkdAp/4HtF8XvnV9lChoBmgJaA9DCHjPgeUIWf2/lIaUUpRoFUsyaBZHQKgAhCyhSLt1fZQoaAZoCWgPQwjL2NDN/gD9v5SGlFKUaBVLMmgWR0CoAENqxkd4dX2UKGgGaAloD0MI/plBfGDH9r+UhpRSlGgVSzJoFkdAp//xHf/FSHV9lChoBmgJaA9DCIM1zqYj4ADAlIaUUpRoFUsyaBZHQKf/nZlnRLN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}