--- library_name: transformers license: apache-2.0 base_model: sshleifer/distilbart-xsum-12-6 tags: - generated_from_trainer model-index: - name: bart-abs-2409-1947-lr-0.0003-bs-4-maxep-10 results: [] --- # bart-abs-2409-1947-lr-0.0003-bs-4-maxep-10 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.1633 - Rouge/rouge1: 0.2439 - Rouge/rouge2: 0.0504 - Rouge/rougel: 0.2065 - Rouge/rougelsum: 0.2067 - Bertscore/bertscore-precision: 0.8544 - Bertscore/bertscore-recall: 0.8581 - Bertscore/bertscore-f1: 0.8562 - Meteor: 0.229 - Gen Len: 45.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| | 3.3364 | 1.0 | 217 | 3.8952 | 0.2911 | 0.0832 | 0.2351 | 0.2361 | 0.8685 | 0.8711 | 0.8697 | 0.2279 | 43.0 | | 2.369 | 2.0 | 434 | 4.0594 | 0.2603 | 0.0584 | 0.2204 | 0.2202 | 0.871 | 0.8545 | 0.8626 | 0.2129 | 35.0 | | 1.4708 | 3.0 | 651 | 4.6061 | 0.2722 | 0.0714 | 0.2029 | 0.2031 | 0.8612 | 0.8618 | 0.8615 | 0.2582 | 45.0 | | 0.9251 | 4.0 | 868 | 5.2239 | 0.2333 | 0.0475 | 0.1761 | 0.1762 | 0.8431 | 0.8562 | 0.8495 | 0.2342 | 58.8273 | | 0.6367 | 5.0 | 1085 | 5.8193 | 0.2622 | 0.0744 | 0.2001 | 0.1997 | 0.8634 | 0.8616 | 0.8625 | 0.1982 | 32.0 | | 0.486 | 6.0 | 1302 | 6.2975 | 0.2591 | 0.0557 | 0.2009 | 0.2012 | 0.859 | 0.8605 | 0.8597 | 0.2511 | 48.0091 | | 0.3892 | 7.0 | 1519 | 6.5002 | 0.2582 | 0.0781 | 0.2156 | 0.2154 | 0.8771 | 0.8626 | 0.8697 | 0.1855 | 29.0 | | 0.3152 | 8.0 | 1736 | 6.7352 | 0.313 | 0.0882 | 0.2413 | 0.2416 | 0.8789 | 0.8681 | 0.8735 | 0.2252 | 34.0 | | 0.2751 | 9.0 | 1953 | 6.9970 | 0.2906 | 0.0847 | 0.2272 | 0.2274 | 0.8671 | 0.8567 | 0.8618 | 0.1991 | 27.0 | | 0.24 | 10.0 | 2170 | 7.1633 | 0.2439 | 0.0504 | 0.2065 | 0.2067 | 0.8544 | 0.8581 | 0.8562 | 0.229 | 45.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 3.0.0 - Tokenizers 0.19.1