--- library_name: mlc-llm base_model: arcee-ai/Llama-3.1-SuperNova-Lite tags: - mlc-llm - web-llm --- # Llama-3.2-1B-Instruct-MLC This is the [Llama-3.1-SuperNova-Lite](https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite) model in MLC format `q4f16_1`. The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm). ## Example Usage Here are some examples of using this model in MLC LLM. Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages). ### Chat In command line, run ```bash mlc_llm chat HF://rohanprichard/Llama-3.1-SuperNova-Lite ``` ### REST Server In command line, run ```bash mlc_llm serve HF://rohanprichard/Llama-3.1-SuperNova-Lite ``` ### Python API ```python from mlc_llm import MLCEngine # Create engine model = "HF://rohanprichard/Llama-3.1-SuperNova-Lite" engine = MLCEngine(model) # Run chat completion in OpenAI API. for response in engine.chat.completions.create( messages = [ { "role": "user", "content": [ { "type": "text", "text": "How many r's are in the word strawberry?" }, ], }, ], model=model, stream=True, ): for choice in response.choices: print(choice.delta.content, end="", flush=True) print("\n") engine.terminate() ``` ## Documentation For more information on MLC LLM project, please visit the [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm). Model card based on the template from the MLC team.