rohitanurag commited on
Commit
6a2e79b
1 Parent(s): 886ad78

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -197
README.md CHANGED
@@ -1,199 +1,106 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ # ClinicalGPT-Pubmed-Instruct-V1.0
2
+
3
+ ## Overview
4
+ ClinicalGPT-Pubmed-Instruct-V1.0 is a specialized language model fine-tuned on the mistralai/Mistral-7B-Instruct-v0.2 base model. While primarily trained on 10 million PubMed abstracts and titles, this model excels at generating responses to life science-related medical questions with relevant citations from various scientific sources.
5
+
6
+ ## Key Features
7
+ - Built on Mistral-7B-Instruct-v0.2 base model
8
+ - Primary training on 10M PubMed abstracts and titles
9
+ - Generates answers with scientific citations from multiple sources
10
+ - Specialized for medical and life science domains
11
+
12
+ ## Applications
13
+ - **Life Science Research**: Generate accurate, referenced answers for biomedical and healthcare queries
14
+ - **Pharmaceutical Industry**: Support healthcare professionals with evidence-based responses
15
+ - **Medical Education**: Aid students and educators with scientifically-supported content from various academic sources
16
+
17
+ ## System Requirements
18
+
19
+ ### GPU Requirements
20
+ - **Minimum VRAM**: 16-18 GB for inference in BF16 (BFloat16) precision
21
+ - **Recommended GPUs**:
22
+ - NVIDIA A100 (20GB) - Ideal for BF16 precision
23
+ - Any GPU with 16+ GB VRAM
24
+ - Performance may vary based on available memory
25
+
26
+ ### Software Prerequisites
27
+ - Python 3.x
28
+ - PyTorch
29
+ - Transformers library
30
+
31
+ ### Basic Implementation
32
+ ```python
33
+ from transformers import AutoTokenizer, AutoModelForCausalLM
34
+ import torch
35
+
36
+ # Set parameters
37
+ model_dir = "rohitanurag/ClinicalGPT-Pubmed-Instruct-V1.0"
38
+ max_new_tokens = 1500
39
+ device = "cuda" if torch.cuda.is_available() else "cpu"
40
+
41
+ # Load tokenizer and model
42
+ tokenizer = AutoTokenizer.from_pretrained(model_dir)
43
+ model = AutoModelForCausalLM.from_pretrained(model_dir).to(device)
44
+
45
+ # Define your question
46
+ question = "What is the role of the tumor microenvironment in cancer progression?"
47
+ prompt = f"""Please provide the answer to the question asked.
48
+ ### Question: {question}
49
+ ### Answer: """
50
+
51
+ # Tokenize input
52
+ inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device)
53
+
54
+ # Generate output
55
+ output_ids = model.generate(
56
+ inputs.input_ids,
57
+ attention_mask=inputs.attention_mask,
58
+ max_new_tokens=1000,
59
+ repetition_penalty=1.2,
60
+ pad_token_id=tokenizer.eos_token_id,
61
+ )
62
+
63
+ # Decode and print
64
+ generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
65
+ print(f"Generated Answer:\n{generated_text}")
66
+ ```
67
+
68
+ ## Sample Output
69
+ ```
70
+ ### Question: What is the role of the tumor microenvironment in cancer progression, and how does it influence the response to therapy?
71
+ ### Answer:
72
+ The tumor microenvironment (TME) refers to the complex network of cells, extracellular matrix components, signaling molecules, and immune cells that surround a growing tumor. It plays an essential role in regulating various aspects of cancer development and progression...
73
+
74
+ ### References:
75
+ 1. Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646-74. doi:10.1016/j.cell.2011.03.019
76
+ 2. Coussens LM, Pollard JW. Angiogenesis and Metastasis. Nature Reviews Cancer. 2006;6(1):57-68. doi:10.1038/nrc2210
77
+ 3. Mantovani A, et al. Cancer's Educated Environment: How the Tumour Microenvironment Promotes Progression. Cell. 2017;168(6):988-1001.e15. doi:10.1016/j.cell.2017.02.011
78
+ 4. Cheng YH, et al. Targeting the Tumor Microenvironment for Improved Therapy Response. Journal of Clinical Oncology. 2018;34(18_suppl):LBA10001. doi:10.1200/JCO.2018.34.18_suppl.LBA10001
79
+ 5. Kang YS, et al. Role of the Tumor Microenvironment in Cancer Immunotherapy. Current Opinion in Pharmacology. 2018;30:101-108. doi:10.1016/j.ycoop.20
80
+ ```
81
 
82
  ## Model Details
83
+ - **Base Model**: Mistral-7B-Instruct-v0.2
84
+ - **Primary Training Data**: 10 million PubMed abstracts and titles
85
+ - **Specialization**: Medical question-answering with scientific citations
86
+ - **Output**: Generates detailed answers with relevant academic references
87
+
88
+ ## Future Development
89
+ ClinicalGPT-Pubmed-Instruct-V2.0 is under development, featuring:
90
+ - Training on 20 million scientific articles
91
+ - Inclusion of full-text articles from various academic sources
92
+ - Enhanced performance for life science tasks
93
+ - Expanded citation capabilities across multiple scientific databases
94
+
95
+ ## Contributors
96
+ - Rohit Anurag Principal Data Scientist
97
+ - Aneesh Paul – Data Scientist
98
+
99
+ ## License
100
+ Licensed under the Apache License, Version 2.0. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
101
+
102
+ ## Citation
103
+ If you use this model in your research, please cite it appropriately.
104
+
105
+ ## Support
106
+ For issues and feature requests, please use the GitHub issue tracker.