rollerhafeezh-amikom commited on
Commit
2c4c435
1 Parent(s): 068b676

Training complete

Browse files
Files changed (1) hide show
  1. README.md +14 -14
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8954509177972865
29
  - name: Recall
30
  type: recall
31
- value: 0.8834645669291339
32
  - name: F1
33
  type: f1
34
- value: 0.8894173602853745
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9820464165815209
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the id_nergrit_corpus dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0942
48
- - Precision: 0.8955
49
- - Recall: 0.8835
50
- - F1: 0.8894
51
- - Accuracy: 0.9820
52
 
53
  ## Model description
54
 
@@ -67,8 +67,8 @@ More information needed
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
- - learning_rate: 2e-05
71
- - train_batch_size: 2
72
  - eval_batch_size: 8
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
@@ -79,9 +79,9 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.0955 | 1.0 | 2285 | 0.0766 | 0.8528 | 0.8669 | 0.8598 | 0.9813 |
83
- | 0.0558 | 2.0 | 4570 | 0.0860 | 0.8867 | 0.8693 | 0.8779 | 0.9811 |
84
- | 0.0368 | 3.0 | 6855 | 0.0942 | 0.8955 | 0.8835 | 0.8894 | 0.9820 |
85
 
86
 
87
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9014463504877228
29
  - name: Recall
30
  type: recall
31
+ value: 0.9038785834738617
32
  - name: F1
33
  type: f1
34
+ value: 0.9026608285618053
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9895516717325228
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the id_nergrit_corpus dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0457
48
+ - Precision: 0.9014
49
+ - Recall: 0.9039
50
+ - F1: 0.9027
51
+ - Accuracy: 0.9896
52
 
53
  ## Model description
54
 
 
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
+ - train_batch_size: 8
72
  - eval_batch_size: 8
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0492 | 1.0 | 1567 | 0.0410 | 0.8863 | 0.8938 | 0.8900 | 0.9886 |
83
+ | 0.0285 | 2.0 | 3134 | 0.0416 | 0.8941 | 0.9025 | 0.8983 | 0.9895 |
84
+ | 0.0159 | 3.0 | 4701 | 0.0457 | 0.9014 | 0.9039 | 0.9027 | 0.9896 |
85
 
86
 
87
  ### Framework versions