rollerhafeezh-amikom commited on
Commit
8d9fa98
1 Parent(s): 5775f13

Training complete

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.1169
24
- - Precision: 0.9439
25
  - Recall: 0.9533
26
- - F1: 0.9486
27
- - Accuracy: 0.9793
28
 
29
  ## Model description
30
 
@@ -43,8 +43,8 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 2e-05
47
- - train_batch_size: 4
48
  - eval_batch_size: 8
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
@@ -55,9 +55,9 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | 0.1311 | 1.0 | 9363 | 0.1125 | 0.9264 | 0.9375 | 0.9319 | 0.9736 |
59
- | 0.0792 | 2.0 | 18726 | 0.1118 | 0.9402 | 0.9475 | 0.9438 | 0.9775 |
60
- | 0.0393 | 3.0 | 28089 | 0.1169 | 0.9439 | 0.9533 | 0.9486 | 0.9793 |
61
 
62
 
63
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.1130
24
+ - Precision: 0.9419
25
  - Recall: 0.9533
26
+ - F1: 0.9476
27
+ - Accuracy: 0.9765
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 6
48
  - eval_batch_size: 8
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.1281 | 1.0 | 6242 | 0.1079 | 0.9280 | 0.9363 | 0.9321 | 0.9721 |
59
+ | 0.0883 | 2.0 | 12484 | 0.1069 | 0.9330 | 0.9496 | 0.9412 | 0.9746 |
60
+ | 0.0431 | 3.0 | 18726 | 0.1130 | 0.9419 | 0.9533 | 0.9476 | 0.9765 |
61
 
62
 
63
  ### Framework versions