rollerhafeezh-amikom commited on
Commit
b407a10
1 Parent(s): e80bb6c

Training complete

Browse files
Files changed (1) hide show
  1. README.md +35 -11
README.md CHANGED
@@ -3,6 +3,8 @@ license: mit
3
  base_model: xlm-roberta-base
4
  tags:
5
  - generated_from_trainer
 
 
6
  metrics:
7
  - precision
8
  - recall
@@ -10,7 +12,29 @@ metrics:
10
  - accuracy
11
  model-index:
12
  - name: xlm-roberta-base-ner-silvanus
13
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # xlm-roberta-base-ner-silvanus
20
 
21
- This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.0636
24
- - Precision: 0.9101
25
- - Recall: 0.9157
26
- - F1: 0.9129
27
- - Accuracy: 0.9853
28
 
29
  ## Model description
30
 
@@ -43,7 +67,7 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 3e-05
47
  - train_batch_size: 8
48
  - eval_batch_size: 8
49
  - seed: 42
@@ -55,9 +79,9 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | 0.1477 | 1.0 | 827 | 0.0558 | 0.8977 | 0.8826 | 0.8901 | 0.9837 |
59
- | 0.0465 | 2.0 | 1654 | 0.0590 | 0.9010 | 0.9032 | 0.9021 | 0.9842 |
60
- | 0.03 | 3.0 | 2481 | 0.0636 | 0.9101 | 0.9157 | 0.9129 | 0.9853 |
61
 
62
 
63
  ### Framework versions
 
3
  base_model: xlm-roberta-base
4
  tags:
5
  - generated_from_trainer
6
+ datasets:
7
+ - id_nergrit_corpus
8
  metrics:
9
  - precision
10
  - recall
 
12
  - accuracy
13
  model-index:
14
  - name: xlm-roberta-base-ner-silvanus
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: id_nergrit_corpus
21
+ type: id_nergrit_corpus
22
+ config: ner
23
+ split: validation
24
+ args: ner
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.918622848200313
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9280632411067193
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9233189146677152
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9850887866850908
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
 
43
  # xlm-roberta-base-ner-silvanus
44
 
45
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the id_nergrit_corpus dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0635
48
+ - Precision: 0.9186
49
+ - Recall: 0.9281
50
+ - F1: 0.9233
51
+ - Accuracy: 0.9851
52
 
53
  ## Model description
54
 
 
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
  - train_batch_size: 8
72
  - eval_batch_size: 8
73
  - seed: 42
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.1607 | 1.0 | 827 | 0.0519 | 0.9094 | 0.9249 | 0.9171 | 0.9855 |
83
+ | 0.0464 | 2.0 | 1654 | 0.0545 | 0.9137 | 0.9289 | 0.9212 | 0.9849 |
84
+ | 0.0322 | 3.0 | 2481 | 0.0635 | 0.9186 | 0.9281 | 0.9233 | 0.9851 |
85
 
86
 
87
  ### Framework versions