File size: 6,853 Bytes
89b0c7d
 
c07902f
 
f6bec51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89b0c7d
c07902f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fa3224
c07902f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24004ae
a1138cb
3fa3224
ffcdda5
2be497f
a2570a2
3fa3224
24004ae
c07902f
ffcdda5
c07902f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2570a2
c07902f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6bec51
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
license: unknown
tags:
- merge
model-index:
- name: Everyone-LLM-7b-Base
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 66.38
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rombodawg/Everyone-LLM-7b-Base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.02
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rombodawg/Everyone-LLM-7b-Base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.94
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rombodawg/Everyone-LLM-7b-Base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 57.89
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rombodawg/Everyone-LLM-7b-Base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 80.43
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rombodawg/Everyone-LLM-7b-Base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.58
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rombodawg/Everyone-LLM-7b-Base
      name: Open LLM Leaderboard
---
Everyone-LLM-7b-Base


![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/ECrHQnZnv8UM9GUCQtlWW.jpeg)

EveryoneLLM series of models made by the community, for the community.

This is the first version of Everyone-LLM, a model that combines the power of the large majority of powerfull fine-tuned LLM's made by the community, to create a vast and knowledgable LLM with various abilities.


Prompt template: Alpaca
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{prompt}
### Response:
```

The models that were used in this merger were as follow:

- https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo

- https://huggingface.co/jondurbin/bagel-dpo-7b-v0.4

- https://huggingface.co/Locutusque/Hercules-2.0-Mistral-7B


- https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca

- https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B

- https://huggingface.co/NousResearch/Nous-Capybara-7B-V1.9

- https://huggingface.co/Intel/neural-chat-7b-v3-3

- https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

- https://huggingface.co/senseable/WestLake-7B-v2

- https://huggingface.co/defog/sqlcoder-7b

- https://huggingface.co/meta-math/MetaMath-Mistral-7B

- https://huggingface.co/nextai-team/apollo-v1-7b

- https://huggingface.co/WizardLM/WizardMath-7B-V1.1

- https://huggingface.co/openchat/openchat-3.5-0106

- https://huggingface.co/mistralai/Mistral-7B-v0.1

Thank you to the creators of the above ai models, they have full credit for the EveryoneLLM series of models. Without their hard work we wouldnt be able to achieve the great success we have in the open source community. 💗

You can find the write up for merging models here:

https://docs.google.com/document/d/1_vOftBnrk9NRk5h10UqrfJ5CDih9KBKL61yvrZtVWPE/edit?usp=sharing


# Open LLM Leaderboard Scores
```
| Model                              | Average |   ARC   | HellaSwag |   MMLU  | TruthfulQA | Winogrande |  GSM8K  |
|------------------------------------|---------|---------|-----------|---------|------------|------------|---------|
|   rombodawg/Everyone-LLM-7b-Base   | 70.21   | 66.38   | 86.02     | 64.94   | 57.89      | 80.43      | 65.58   |
```

Config for the merger can be found bellow:

```yaml
models:
  - model: cognitivecomputations_dolphin-2.6-mistral-7b-dpo
    parameters:
      weight: 1
  - model: jondurbin_bagel-dpo-7b-v0.4
    parameters:
      weight: 1
  - model: Locutusque_Hercules-2.0-Mistral-7B
    parameters:
      weight: 1
  - model: Open-Orca_Mistral-7B-OpenOrca
    parameters:
      weight: 1
  - model: teknium_OpenHermes-2.5-Mistral-7B
    parameters:
      weight: 1
  - model: NousResearch_Nous-Capybara-7B-V1.9

    parameters:
      weight: 1
  - model: Intel_neural-chat-7b-v3-3
    parameters:
      weight: 1
  - model: mistralai_Mistral-7B-Instruct-v0.2
    parameters:
      weight: 1
  - model: senseable_WestLake-7B-v2
    parameters:
      weight: 1
  - model: defog_sqlcoder-7b
    parameters:
      weight: 1
  - model: meta-math_MetaMath-Mistral-7B
    parameters:
      weight: 1
  - model: nextai-team_apollo-v1-7b
    parameters:
      weight: 1
  - model: WizardLM_WizardMath-7B-V1.1
    parameters:
      weight: 1
  - model: openchat_openchat-3.5-0106
    parameters:
      weight: 1
merge_method: task_arithmetic
base_model: mistralai_Mistral-7B-v0.1
parameters:
  normalize: true
  int8_mask: true
dtype: float16

```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_rombodawg__Everyone-LLM-7b-Base)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |70.21|
|AI2 Reasoning Challenge (25-Shot)|66.38|
|HellaSwag (10-Shot)              |86.02|
|MMLU (5-Shot)                    |64.94|
|TruthfulQA (0-shot)              |57.89|
|Winogrande (5-shot)              |80.43|
|GSM8k (5-shot)                   |65.58|