File size: 1,605 Bytes
3f333de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a908ef1
 
 
 
 
 
3f333de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a908ef1
 
 
3f333de
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
base_model: allenai/led-base-16384
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: thesis-led-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# thesis-led-finetuned

This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1628
- Rouge1: 42.239
- Rouge2: 14.7162
- Rougel: 22.9523
- Rougelsum: 38.2971
- Gen Len: 219.9278

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2  | Rougel  | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-------:|:---------:|:--------:|
| 2.2358        | 1.0   | 7870 | 2.1628          | 42.239 | 14.7162 | 22.9523 | 38.2971   | 219.9278 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2