Add zipnn
Browse files
README.md
CHANGED
@@ -12,8 +12,8 @@ model-index:
|
|
12 |
- task:
|
13 |
type: text-generation
|
14 |
dataset:
|
15 |
-
|
16 |
-
|
17 |
metrics:
|
18 |
- name: pass@1
|
19 |
type: pass@1
|
@@ -22,8 +22,8 @@ model-index:
|
|
22 |
- task:
|
23 |
type: text-generation
|
24 |
dataset:
|
25 |
-
|
26 |
-
|
27 |
metrics:
|
28 |
- name: pass@1
|
29 |
type: pass@1
|
@@ -32,8 +32,8 @@ model-index:
|
|
32 |
- task:
|
33 |
type: text-generation
|
34 |
dataset:
|
35 |
-
|
36 |
-
|
37 |
metrics:
|
38 |
- name: pass@1
|
39 |
type: pass@1
|
@@ -42,8 +42,8 @@ model-index:
|
|
42 |
- task:
|
43 |
type: text-generation
|
44 |
dataset:
|
45 |
-
|
46 |
-
|
47 |
metrics:
|
48 |
- name: pass@1
|
49 |
type: pass@1
|
@@ -52,8 +52,8 @@ model-index:
|
|
52 |
- task:
|
53 |
type: text-generation
|
54 |
dataset:
|
55 |
-
|
56 |
-
|
57 |
metrics:
|
58 |
- name: pass@1
|
59 |
type: pass@1
|
@@ -62,18 +62,18 @@ model-index:
|
|
62 |
- task:
|
63 |
type: text-generation
|
64 |
dataset:
|
65 |
-
|
66 |
-
|
67 |
metrics:
|
68 |
- name: pass@1
|
69 |
type: pass@1
|
70 |
-
value: 46.
|
71 |
veriefied: false
|
72 |
- task:
|
73 |
type: text-generation
|
74 |
dataset:
|
75 |
-
|
76 |
-
|
77 |
metrics:
|
78 |
- name: pass@1
|
79 |
type: pass@1
|
@@ -82,8 +82,8 @@ model-index:
|
|
82 |
- task:
|
83 |
type: text-generation
|
84 |
dataset:
|
85 |
-
|
86 |
-
|
87 |
metrics:
|
88 |
- name: pass@1
|
89 |
type: pass@1
|
@@ -92,8 +92,8 @@ model-index:
|
|
92 |
- task:
|
93 |
type: text-generation
|
94 |
dataset:
|
95 |
-
|
96 |
-
|
97 |
metrics:
|
98 |
- name: pass@1
|
99 |
type: pass@1
|
@@ -102,8 +102,8 @@ model-index:
|
|
102 |
- task:
|
103 |
type: text-generation
|
104 |
dataset:
|
105 |
-
|
106 |
-
|
107 |
metrics:
|
108 |
- name: pass@1
|
109 |
type: pass@1
|
@@ -112,8 +112,8 @@ model-index:
|
|
112 |
- task:
|
113 |
type: text-generation
|
114 |
dataset:
|
115 |
-
|
116 |
-
|
117 |
metrics:
|
118 |
- name: pass@1
|
119 |
type: pass@1
|
@@ -122,8 +122,8 @@ model-index:
|
|
122 |
- task:
|
123 |
type: text-generation
|
124 |
dataset:
|
125 |
-
|
126 |
-
|
127 |
metrics:
|
128 |
- name: pass@1
|
129 |
type: pass@1
|
@@ -132,8 +132,8 @@ model-index:
|
|
132 |
- task:
|
133 |
type: text-generation
|
134 |
dataset:
|
135 |
-
|
136 |
-
|
137 |
metrics:
|
138 |
- name: pass@1
|
139 |
type: pass@1
|
@@ -142,8 +142,8 @@ model-index:
|
|
142 |
- task:
|
143 |
type: text-generation
|
144 |
dataset:
|
145 |
-
|
146 |
-
|
147 |
metrics:
|
148 |
- name: pass@1
|
149 |
type: pass@1
|
@@ -152,8 +152,8 @@ model-index:
|
|
152 |
- task:
|
153 |
type: text-generation
|
154 |
dataset:
|
155 |
-
|
156 |
-
|
157 |
metrics:
|
158 |
- name: pass@1
|
159 |
type: pass@1
|
@@ -162,8 +162,8 @@ model-index:
|
|
162 |
- task:
|
163 |
type: text-generation
|
164 |
dataset:
|
165 |
-
|
166 |
-
|
167 |
metrics:
|
168 |
- name: pass@1
|
169 |
type: pass@1
|
@@ -172,8 +172,8 @@ model-index:
|
|
172 |
- task:
|
173 |
type: text-generation
|
174 |
dataset:
|
175 |
-
|
176 |
-
|
177 |
metrics:
|
178 |
- name: pass@1
|
179 |
type: pass@1
|
@@ -182,8 +182,8 @@ model-index:
|
|
182 |
- task:
|
183 |
type: text-generation
|
184 |
dataset:
|
185 |
-
|
186 |
-
|
187 |
metrics:
|
188 |
- name: pass@1
|
189 |
type: pass@1
|
@@ -192,55 +192,110 @@ model-index:
|
|
192 |
- task:
|
193 |
type: text-generation
|
194 |
dataset:
|
195 |
-
|
196 |
-
|
197 |
metrics:
|
198 |
- name: pass@1
|
199 |
type: pass@1
|
200 |
-
value: 49.
|
201 |
-
veriefied: false
|
202 |
- task:
|
203 |
type: text-generation
|
204 |
dataset:
|
205 |
-
|
206 |
-
|
207 |
metrics:
|
208 |
- name: pass@1
|
209 |
type: pass@1
|
210 |
value: 68.99
|
211 |
-
veriefied: false
|
212 |
- task:
|
213 |
type: text-generation
|
214 |
dataset:
|
215 |
-
|
216 |
-
|
217 |
metrics:
|
218 |
- name: pass@1
|
219 |
type: pass@1
|
220 |
value: 30.94
|
221 |
-
veriefied: false
|
222 |
- task:
|
223 |
type: text-generation
|
224 |
dataset:
|
225 |
-
|
226 |
-
|
227 |
metrics:
|
228 |
- name: pass@1
|
229 |
type: pass@1
|
230 |
value: 64.94
|
231 |
-
veriefied: false
|
232 |
- task:
|
233 |
type: text-generation
|
234 |
dataset:
|
235 |
-
|
236 |
-
|
237 |
metrics:
|
238 |
- name: pass@1
|
239 |
type: pass@1
|
240 |
-
value: 48.
|
241 |
-
veriefied: false
|
|
|
|
|
242 |
---
|
243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
<!-- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62cd5057674cdb524450093d/1hzxoPwqkBJXshKVVe6_9.png) -->
|
245 |
<!-- ![image/png](granite-3_0-language-models_Group_1.png) -->
|
246 |
|
@@ -281,15 +336,19 @@ Install the following libraries:
|
|
281 |
pip install torch torchvision torchaudio
|
282 |
pip install accelerate
|
283 |
pip install transformers
|
|
|
284 |
```
|
285 |
Then, copy the snippet from the section that is relevant for your use case.
|
286 |
|
287 |
```python
|
288 |
import torch
|
289 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
290 |
|
291 |
device = "auto"
|
292 |
-
model_path = "
|
293 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
294 |
# drop device_map if running on CPU
|
295 |
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
|
|
12 |
- task:
|
13 |
type: text-generation
|
14 |
dataset:
|
15 |
+
type: instruction-following
|
16 |
+
name: IFEval
|
17 |
metrics:
|
18 |
- name: pass@1
|
19 |
type: pass@1
|
|
|
22 |
- task:
|
23 |
type: text-generation
|
24 |
dataset:
|
25 |
+
type: instruction-following
|
26 |
+
name: MT-Bench
|
27 |
metrics:
|
28 |
- name: pass@1
|
29 |
type: pass@1
|
|
|
32 |
- task:
|
33 |
type: text-generation
|
34 |
dataset:
|
35 |
+
type: human-exams
|
36 |
+
name: AGI-Eval
|
37 |
metrics:
|
38 |
- name: pass@1
|
39 |
type: pass@1
|
|
|
42 |
- task:
|
43 |
type: text-generation
|
44 |
dataset:
|
45 |
+
type: human-exams
|
46 |
+
name: MMLU
|
47 |
metrics:
|
48 |
- name: pass@1
|
49 |
type: pass@1
|
|
|
52 |
- task:
|
53 |
type: text-generation
|
54 |
dataset:
|
55 |
+
type: human-exams
|
56 |
+
name: MMLU-Pro
|
57 |
metrics:
|
58 |
- name: pass@1
|
59 |
type: pass@1
|
|
|
62 |
- task:
|
63 |
type: text-generation
|
64 |
dataset:
|
65 |
+
type: commonsense
|
66 |
+
name: OBQA
|
67 |
metrics:
|
68 |
- name: pass@1
|
69 |
type: pass@1
|
70 |
+
value: 46.6
|
71 |
veriefied: false
|
72 |
- task:
|
73 |
type: text-generation
|
74 |
dataset:
|
75 |
+
type: commonsense
|
76 |
+
name: SIQA
|
77 |
metrics:
|
78 |
- name: pass@1
|
79 |
type: pass@1
|
|
|
82 |
- task:
|
83 |
type: text-generation
|
84 |
dataset:
|
85 |
+
type: commonsense
|
86 |
+
name: Hellaswag
|
87 |
metrics:
|
88 |
- name: pass@1
|
89 |
type: pass@1
|
|
|
92 |
- task:
|
93 |
type: text-generation
|
94 |
dataset:
|
95 |
+
type: commonsense
|
96 |
+
name: WinoGrande
|
97 |
metrics:
|
98 |
- name: pass@1
|
99 |
type: pass@1
|
|
|
102 |
- task:
|
103 |
type: text-generation
|
104 |
dataset:
|
105 |
+
type: commonsense
|
106 |
+
name: TruthfulQA
|
107 |
metrics:
|
108 |
- name: pass@1
|
109 |
type: pass@1
|
|
|
112 |
- task:
|
113 |
type: text-generation
|
114 |
dataset:
|
115 |
+
type: reading-comprehension
|
116 |
+
name: BoolQ
|
117 |
metrics:
|
118 |
- name: pass@1
|
119 |
type: pass@1
|
|
|
122 |
- task:
|
123 |
type: text-generation
|
124 |
dataset:
|
125 |
+
type: reading-comprehension
|
126 |
+
name: SQuAD 2.0
|
127 |
metrics:
|
128 |
- name: pass@1
|
129 |
type: pass@1
|
|
|
132 |
- task:
|
133 |
type: text-generation
|
134 |
dataset:
|
135 |
+
type: reasoning
|
136 |
+
name: ARC-C
|
137 |
metrics:
|
138 |
- name: pass@1
|
139 |
type: pass@1
|
|
|
142 |
- task:
|
143 |
type: text-generation
|
144 |
dataset:
|
145 |
+
type: reasoning
|
146 |
+
name: GPQA
|
147 |
metrics:
|
148 |
- name: pass@1
|
149 |
type: pass@1
|
|
|
152 |
- task:
|
153 |
type: text-generation
|
154 |
dataset:
|
155 |
+
type: reasoning
|
156 |
+
name: BBH
|
157 |
metrics:
|
158 |
- name: pass@1
|
159 |
type: pass@1
|
|
|
162 |
- task:
|
163 |
type: text-generation
|
164 |
dataset:
|
165 |
+
type: code
|
166 |
+
name: HumanEvalSynthesis
|
167 |
metrics:
|
168 |
- name: pass@1
|
169 |
type: pass@1
|
|
|
172 |
- task:
|
173 |
type: text-generation
|
174 |
dataset:
|
175 |
+
type: code
|
176 |
+
name: HumanEvalExplain
|
177 |
metrics:
|
178 |
- name: pass@1
|
179 |
type: pass@1
|
|
|
182 |
- task:
|
183 |
type: text-generation
|
184 |
dataset:
|
185 |
+
type: code
|
186 |
+
name: HumanEvalFix
|
187 |
metrics:
|
188 |
- name: pass@1
|
189 |
type: pass@1
|
|
|
192 |
- task:
|
193 |
type: text-generation
|
194 |
dataset:
|
195 |
+
type: code
|
196 |
+
name: MBPP
|
197 |
metrics:
|
198 |
- name: pass@1
|
199 |
type: pass@1
|
200 |
+
value: 49.6
|
201 |
+
veriefied: false
|
202 |
- task:
|
203 |
type: text-generation
|
204 |
dataset:
|
205 |
+
type: math
|
206 |
+
name: GSM8K
|
207 |
metrics:
|
208 |
- name: pass@1
|
209 |
type: pass@1
|
210 |
value: 68.99
|
211 |
+
veriefied: false
|
212 |
- task:
|
213 |
type: text-generation
|
214 |
dataset:
|
215 |
+
type: math
|
216 |
+
name: MATH
|
217 |
metrics:
|
218 |
- name: pass@1
|
219 |
type: pass@1
|
220 |
value: 30.94
|
221 |
+
veriefied: false
|
222 |
- task:
|
223 |
type: text-generation
|
224 |
dataset:
|
225 |
+
type: multilingual
|
226 |
+
name: PAWS-X (7 langs)
|
227 |
metrics:
|
228 |
- name: pass@1
|
229 |
type: pass@1
|
230 |
value: 64.94
|
231 |
+
veriefied: false
|
232 |
- task:
|
233 |
type: text-generation
|
234 |
dataset:
|
235 |
+
type: multilingual
|
236 |
+
name: MGSM (6 langs)
|
237 |
metrics:
|
238 |
- name: pass@1
|
239 |
type: pass@1
|
240 |
+
value: 48.2
|
241 |
+
veriefied: false
|
242 |
+
base_model:
|
243 |
+
- ibm-granite/granite-3.0-8b-instruct
|
244 |
---
|
245 |
|
246 |
+
# Disclaimer and Requirements
|
247 |
+
|
248 |
+
This model is a clone of [**ibm-granite/granite-3.0-8b-instruct**](https://huggingface.co/ibm-granite/granite-3.0-8b-instruct) compressed using ZipNN. Compressed losslessly to 67% its original size, ZipNN saved ~6GB in storage and potentially ~9TB in data transfer **monthly**.
|
249 |
+
|
250 |
+
### Requirement
|
251 |
+
|
252 |
+
In order to use the model, ZipNN is necessary:
|
253 |
+
```bash
|
254 |
+
pip install zipnn
|
255 |
+
```
|
256 |
+
### Use This Model
|
257 |
+
```python
|
258 |
+
# Use a pipeline as a high-level helper
|
259 |
+
from transformers import pipeline
|
260 |
+
from zipnn import zipnn_hf
|
261 |
+
|
262 |
+
zipnn_hf()
|
263 |
+
|
264 |
+
messages = [
|
265 |
+
{"role": "user", "content": "Who are you?"},
|
266 |
+
]
|
267 |
+
pipe = pipeline("text-generation", model="royleibov/granite-3.0-8b-instruct-ZipNN-Compressed")
|
268 |
+
pipe(messages)
|
269 |
+
```
|
270 |
+
```python
|
271 |
+
# Load model directly
|
272 |
+
import torch
|
273 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
274 |
+
from zipnn import zipnn_hf
|
275 |
+
|
276 |
+
zipnn_hf()
|
277 |
+
|
278 |
+
model = AutoModelForCausalLM.from_pretrained(
|
279 |
+
"royleibov/granite-3.0-8b-instruct-ZipNN-Compressed",
|
280 |
+
device_map="auto",
|
281 |
+
)
|
282 |
+
tokenizer = AutoTokenizer.from_pretrained("royleibov/granite-3.0-8b-instruct-ZipNN-Compressed")
|
283 |
+
```
|
284 |
+
### ZipNN
|
285 |
+
ZipNN also allows you to seemlessly save local disk space in your cache after the model is downloaded.
|
286 |
+
|
287 |
+
To compress the cached model, simply run:
|
288 |
+
```bash
|
289 |
+
python zipnn_compress_path.py safetensors --model royleibov/granite-3.0-8b-instruct-ZipNN-Compressed --hf_cache
|
290 |
+
```
|
291 |
+
|
292 |
+
The model will be decompressed automatically and safely as long as `zipnn_hf()` is added at the top of the file like in the [example above](#use-this-model).
|
293 |
+
|
294 |
+
To decompress manualy, simply run:
|
295 |
+
```bash
|
296 |
+
python zipnn_decompress_path.py --model royleibov/granite-3.0-8b-instruct-ZipNN-Compressed --hf_cache
|
297 |
+
```
|
298 |
+
|
299 |
<!-- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62cd5057674cdb524450093d/1hzxoPwqkBJXshKVVe6_9.png) -->
|
300 |
<!-- ![image/png](granite-3_0-language-models_Group_1.png) -->
|
301 |
|
|
|
336 |
pip install torch torchvision torchaudio
|
337 |
pip install accelerate
|
338 |
pip install transformers
|
339 |
+
pip install zipnn
|
340 |
```
|
341 |
Then, copy the snippet from the section that is relevant for your use case.
|
342 |
|
343 |
```python
|
344 |
import torch
|
345 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
346 |
+
from zipnn import zipnn_hf
|
347 |
+
|
348 |
+
zipnn_hf()
|
349 |
|
350 |
device = "auto"
|
351 |
+
model_path = "royleibov/granite-3.0-8b-instruct-ZipNN-Compressed"
|
352 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
353 |
# drop device_map if running on CPU
|
354 |
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|