File size: 8,332 Bytes
5773bf8 af60a36 5773bf8 af60a36 5773bf8 af60a36 5773bf8 af60a36 5773bf8 af60a36 5773bf8 af60a36 8191fb5 5773bf8 af60a36 5773bf8 afd830f 5773bf8 a2d0e7b 5773bf8 afd830f 5773bf8 afd830f 5773bf8 a2d0e7b 5773bf8 afd830f 5773bf8 afd830f 5773bf8 8191fb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import math
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, reduce, repeat
from torch.utils.checkpoint import checkpoint
from transformers import AutoModel, PreTrainedModel
from .config import LUARConfig
# Adapted LucidRains impl. of Memory Efficient Attention
# https://github.com/lucidrains/memory-efficient-attention-pytorch
def exists(val):
return val is not None
def summarize_qkv_chunk(
q, k, v,
mask
):
"""Dot-Product Attention for a chunk of queries, keys, and values.
"""
weight = torch.einsum('b h i d, b h j d -> b h i j', q, k)
if exists(mask):
# HuggingFace masks have to be added:
weight += mask
weight_max = weight.amax(dim = -1, keepdim = True).detach()
weight = weight - weight_max
exp_weight = weight.exp()
weighted_value = torch.einsum('b h i j, b h j d -> b h i d', exp_weight, v)
return exp_weight.sum(dim = -1), weighted_value, rearrange(weight_max, '... 1 -> ...')
checkpointed_summarize_qkv_chunk = partial(checkpoint, summarize_qkv_chunk)
def memory_efficient_attention(
q, k, v,
mask = None,
q_bucket_size = 512,
k_bucket_size = 1024,
eps = 1e-8
):
scale = q.shape[-1] ** -0.5
q = q * scale
# function
needs_backwards = q.requires_grad or k.requires_grad or v.requires_grad
summarize_qkv_fn = checkpointed_summarize_qkv_chunk if needs_backwards else summarize_qkv_chunk
# chunk all the inputs
q_chunks = q.split(q_bucket_size, dim = -2)
k_chunks = k.split(k_bucket_size, dim = -2)
v_chunks = v.split(k_bucket_size, dim = -2)
mask_chunks = mask.split(k_bucket_size, dim = -1) if exists(mask) else ((None,) * len(k_chunks))
# loop through all chunks and accumulate
out = []
for q_index, q_chunk in enumerate(q_chunks):
exp_weights = []
weighted_values = []
weight_maxes = []
for k_index, (k_chunk, v_chunk, mask_chunk) in enumerate(zip(k_chunks, v_chunks, mask_chunks)):
exp_weight_chunk, weighted_value_chunk, weight_max_chunk = summarize_qkv_fn(
q_chunk,
k_chunk,
v_chunk,
mask_chunk,
)
exp_weights.append(exp_weight_chunk)
weighted_values.append(weighted_value_chunk)
weight_maxes.append(weight_max_chunk)
exp_weights = torch.stack(exp_weights, dim = -1)
weighted_values = torch.stack(weighted_values, dim = -1)
weight_maxes = torch.stack(weight_maxes, dim = -1)
global_max = weight_maxes.amax(dim = -1, keepdim = True)
renorm_factor = (weight_maxes - global_max).exp().detach()
exp_weights = exp_weights * renorm_factor
weighted_values = weighted_values * rearrange(renorm_factor, '... c -> ... 1 c')
all_values = weighted_values.sum(dim = -1)
all_weights = exp_weights.sum(dim = -1)
normalized_values = all_values / (rearrange(all_weights, '... -> ... 1') + eps)
out.append(normalized_values)
return torch.cat(out, dim=-2)
class SelfAttention(nn.Module):
"""Implements Dot-Product Self-Attention as used in "Attention is all You Need".
"""
def __init__(
self,
memory_efficient_attention=False,
q_bucket_size=512,
k_bucket_size=1024,
):
super(SelfAttention, self).__init__()
self.use_memory_efficient_attention = memory_efficient_attention
self.q_bucket_size = q_bucket_size
self.k_bucket_size = k_bucket_size
def forward(self, k, q, v):
if self.use_memory_efficient_attention:
q, k, v = map(
lambda t: rearrange(t, 'b n (h d) -> b h n d', h = 12),
(q, k, v)
)
out = memory_efficient_attention(
q, k, v,
q_bucket_size=self.q_bucket_size,
k_bucket_size=self.k_bucket_size
)
out = rearrange(out, 'b h n d -> b n (h d)')
return out
else:
d_k = q.size(-1)
scores = torch.matmul(k, q.transpose(-2, -1)) / math.sqrt(d_k)
p_attn = F.softmax(scores, dim=-1)
return torch.matmul(p_attn, v)
class LUAR(PreTrainedModel):
"""Defines the LUAR model.
"""
config_class = LUARConfig
def __init__(self, config):
super().__init__(config)
self.create_transformer()
self.attn_fn = SelfAttention(
config.use_memory_efficient_attention,
config.q_bucket_size,
config.k_bucket_size,
)
self.linear = nn.Linear(self.hidden_size, config.embedding_size)
def create_transformer(self):
"""Creates the Transformer backbone.
"""
self.transformer = AutoModel.from_pretrained("sentence-transformers/paraphrase-distilroberta-base-v1")
self.hidden_size = self.transformer.config.hidden_size
self.num_attention_heads = self.transformer.config.num_attention_heads
self.dim_head = self.hidden_size // self.num_attention_heads
def mean_pooling(self, token_embeddings, attention_mask):
"""Mean Pooling as described in the SBERT paper.
"""
input_mask_expanded = repeat(attention_mask, 'b l -> b l d', d=self.hidden_size).type(token_embeddings.type())
sum_embeddings = reduce(token_embeddings * input_mask_expanded, 'b l d -> b d', 'sum')
sum_mask = torch.clamp(reduce(input_mask_expanded, 'b l d -> b d', 'sum'), min=1e-9)
return sum_embeddings / sum_mask
def get_episode_embeddings(self, input_ids, attention_mask, output_attentions=False, document_batch_size=0):
"""Computes the Author Embedding.
"""
B, E, _ = attention_mask.shape
input_ids = rearrange(input_ids, 'b e l -> (b e) l')
attention_mask = rearrange(attention_mask, 'b e l -> (b e) l')
if document_batch_size > 0:
outputs = {"last_hidden_state": [], "attentions": []}
for i in range(0, len(input_ids), document_batch_size):
out = self.transformer(
input_ids=input_ids[i:i+document_batch_size],
attention_mask=attention_mask[i:i+document_batch_size],
return_dict=True,
output_hidden_states=False,
output_attentions=output_attentions,
)
outputs["last_hidden_state"].append(out["last_hidden_state"])
if output_attentions:
outputs["attentions"].append(out["attentions"])
outputs["last_hidden_state"] = torch.cat(outputs["last_hidden_state"], dim=0)
if output_attentions:
outputs["attentions"] = tuple([torch.cat([x[i] for x in outputs["attentions"]], dim=0) for i in range(len(outputs["attentions"][0]))])
else:
outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=True,
output_hidden_states=False,
output_attentions=output_attentions,
)
# at this point, we're embedding individual "comments"
comment_embeddings = self.mean_pooling(outputs['last_hidden_state'], attention_mask)
comment_embeddings = rearrange(comment_embeddings, '(b e) l -> b e l', b=B, e=E)
# aggregate individual comments embeddings into episode embeddings
episode_embeddings = self.attn_fn(comment_embeddings, comment_embeddings, comment_embeddings)
episode_embeddings = reduce(episode_embeddings, 'b e l -> b l', 'max')
episode_embeddings = self.linear(episode_embeddings)
if output_attentions:
return episode_embeddings, outputs["attentions"]
return episode_embeddings
def forward(self, input_ids, attention_mask, output_attentions=False, document_batch_size=0):
"""Calculates a fixed-length feature vector for a batch of episode samples.
"""
output = self.get_episode_embeddings(input_ids, attention_mask, output_attentions, document_batch_size)
return output
|