--- library_name: peft tags: - generated_from_trainer base_model: JY623/KoSOLAR-v2.0 model-index: - name: qlora-out/v1.2 results: [] license: apache-2.0 --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: JY623/KoSOLAR-v2.0 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false push_dataset_to_hub: datasets: - path: kyujinpy/KOR-OpenOrca-Platypus-v3 type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./qlora-out/v1.2 adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: false warmup_steps: 20 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# qlora-out/v1.2 This model is a fine-tuned version of [JY623/KoSOLAR-v2.0](https://huggingface.co/JY623/KoSOLAR-v2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.1419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 7 - gradient_accumulation_steps: 4 - total_train_batch_size: 28 - total_eval_batch_size: 7 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 13.4775 | 0.0 | 1 | 13.4330 | | 6.9219 | 0.25 | 64 | 6.2022 | | 5.5416 | 0.5 | 128 | 5.2780 | | 5.4282 | 0.75 | 192 | 5.1929 | | 5.4864 | 1.0 | 256 | 5.1416 | | 5.2877 | 1.24 | 320 | 5.1441 | | 5.1731 | 1.49 | 384 | 5.1413 | | 5.6221 | 1.74 | 448 | 5.1406 | | 5.3737 | 1.99 | 512 | 5.1419 | ### Framework versions - PEFT 0.9.0 - Transformers 4.40.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.0