File size: 1,160 Bytes
74e7380 154f7f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen3-30B-A3B-Instruct-2507
tags:
- medical
- case-studies
- japanese
- qwen
- merged
---
# rshaikh22/Qwen3_30B_Medical
This is a merged model combining Qwen/Qwen3-30B-A3B-Instruct-2507 with a LoRA adapter fine-tuned on Japanese medical case studies.
## Model Details
- **Base Model**: Qwen/Qwen3-30B-A3B-Instruct-2507
- **Training Data**: Japanese medical case studies (~93,563 examples)
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation) - Merged
- **Model Type**: Merged Causal LM (no adapter needed)
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("rshaikh22/Qwen3_30B_Medical", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("rshaikh22/Qwen3_30B_Medical", trust_remote_code=True)
# Use the model
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
print(tokenizer.decode(outputs[0]))
```
## Training Details
- **Epochs**: 2
- **Learning Rate**: 5e-4
- **Batch Size**: 24
- **Training Examples**: ~93,563
|