--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen3-30B-A3B-Instruct-2507 tags: - medical - case-studies - japanese - qwen - merged --- # rshaikh22/Qwen3_30B_Medical This is a merged model combining Qwen/Qwen3-30B-A3B-Instruct-2507 with a LoRA adapter fine-tuned on Japanese medical case studies. ## Model Details - **Base Model**: Qwen/Qwen3-30B-A3B-Instruct-2507 - **Training Data**: Japanese medical case studies (~93,563 examples) - **Fine-tuning Method**: LoRA (Low-Rank Adaptation) - Merged - **Model Type**: Merged Causal LM (no adapter needed) ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("rshaikh22/Qwen3_30B_Medical", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("rshaikh22/Qwen3_30B_Medical", trust_remote_code=True) # Use the model prompt = "Your prompt here" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=200) print(tokenizer.decode(outputs[0])) ``` ## Training Details - **Epochs**: 2 - **Learning Rate**: 5e-4 - **Batch Size**: 24 - **Training Examples**: ~93,563