File size: 13,093 Bytes
1fe074d
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0cc7a53760>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0cc7a537f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0cc7a53880>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0cc7a53910>", "_build": "<function ActorCriticPolicy._build at 0x7f0cc7a539a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0cc7a53a30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0cc7a53ac0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0cc7a53b50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0cc7a53be0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0cc7a53c70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0cc7a53d00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0cc7a53d90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0cc7a4b300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688961262865729227, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAApoDzJ67E/Tf9qPrvZVb7bcoU8Zre8PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEcOtwJgLKMAWyUTSgBjAF0lEdAmetm3fAKv3V9lChoBkdAcWeRFqi48WgHTSEBaAhHQJns+VY6nzh1fZQoaAZHQEV0YPXkHUtoB0vqaAhHQJnvXR9gF5h1fZQoaAZHQG5Zp0fYBeZoB00eAWgIR0CZ8OkOI68ydX2UKGgGR0Bt6n6sQumKaAdNKQFoCEdAmfJwnc+JQHV9lChoBkdAcim2RaHKwWgHTWwBaAhHQJn1ftx+8Xh1fZQoaAZHQHG/3TVlPJtoB01OAWgIR0CZ91AP/aQFdX2UKGgGR0BxNYpDu0CzaAdNbAFoCEdAmflBun/DL3V9lChoBkdAbH3ZQpF1CGgHTSsBaAhHQJn73XoTwlV1fZQoaAZHQHBAlL39JjFoB00wAWgIR0CZ/YZh8YygdX2UKGgGR0Bwlz80k4WDaAdNFwFoCEdAmf75vLowEnV9lChoBkdAYp+6Lfk3j2gHTegDaAhHQJoFkHzH0bt1fZQoaAZHQG4WvDxb0OFoB00TAWgIR0CaBwJSBK+SdX2UKGgGR0BLbKJEYwZgaAdNAQFoCEdAmgni9/SYxHV9lChoBkdARu2TTvy9VWgHS+NoCEdAmgtoNd7fHnV9lChoBkdAcB77xd6cAmgHTUsBaAhHQJoNxxCIDYB1fZQoaAZHQHA9gDzRQadoB01jAWgIR0CaEgrd30PIdX2UKGgGR0Bhg1/YraufaAdN6ANoCEdAmhjURJ2+wnV9lChoBkdAbxAw0waisWgHTUgBaAhHQJoalU5uIh11fZQoaAZHQG3g+nAIpphoB00vAWgIR0CaHC5OJtSAdX2UKGgGR0Bu8j9XLeQ/aAdNMwFoCEdAmh3VII4VAXV9lChoBkdAbjAXF98Z1mgHTU4BaAhHQJogvADaGpN1fZQoaAZHQGzXe+mFajhoB003AWgIR0CaIm4nF5v+dX2UKGgGR0BuywOhCdBjaAdNEgFoCEdAmiPjTSb6QHV9lChoBkdAcK6SIgvDg2gHTWQBaAhHQJom8XP7el91fZQoaAZHQHI8a/yoXKtoB00iAWgIR0CaKI7MPjGUdX2UKGgGR0BwQ1Z3cHnmaAdNOAFoCEdAmipCkfs/p3V9lChoBkdAcPACq6vq1WgHTWEBaAhHQJotQIsyzol1fZQoaAZHQG9PptaY/mloB00BAWgIR0CaLrzmOlwcdX2UKGgGR0BLQ48U21lYaAdL22gIR0CaL99RrJr+dX2UKGgGR0Bws3QzDXOGaAdNCAFoCEdAmjFDHOryUnV9lChoBkdAb0gESM98qmgHTTEBaAhHQJo0B0IToMd1fZQoaAZHQG2YmpuMuOFoB00gAWgIR0CaNY3Sro4ddX2UKGgGR0BxM8aQ3gk1aAdNUgFoCEdAmjdboKUmlnV9lChoBkdAa4GrT6SDAmgHTSABaAhHQJo6Cig00nB1fZQoaAZHQHBNMd5prUNoB00qAWgIR0CaPAvUjLSvdX2UKGgGR0ByzcVLzwtraAdNEAFoCEdAmj3xFmWdE3V9lChoBkdAcVujRUm2LGgHTREBaAhHQJo/4fCAMDx1fZQoaAZHQHHU70voNd9oB00tAWgIR0CaQ8l0HQhPdX2UKGgGR0BwiJMGorFwaAdN/gFoCEdAmkbvjbSJCXV9lChoBkdAcFNRfnfVJGgHTQ4BaAhHQJpIWjbi6xx1fZQoaAZHQHJYvuw5eZ5oB01PAWgIR0CaS0a/ATIvdX2UKGgGR0BxGUmE4//vaAdNHAFoCEdAmkzemaYu03V9lChoBkdAcLX8WsRxtGgHTWMBaAhHQJpOygte2NN1fZQoaAZHQEnMGrS3LFJoB00HAWgIR0CaUVk6cRUWdX2UKGgGR0BvMumzjWCmaAdNQgFoCEdAmlMcE/0NBnV9lChoBkdAbMu4hllK9WgHTSQBaAhHQJpUs/2TPjZ1fZQoaAZHQG7xEiMYMv1oB00SAWgIR0CaViQHiWE9dX2UKGgGR0BwALGecx0uaAdNVwFoCEdAmlkS3ocJdHV9lChoBkdAcXor7fpD/mgHTaUBaAhHQJpbQ/W1+iJ1fZQoaAZHQHDz1LFn7HhoB01CAWgIR0CaXh1v2oNvdX2UKGgGR0BwqRJWeYlZaAdNSAFoCEdAml/V09yLh3V9lChoBkdARSi0F8ohIWgHS8VoCEdAmmDfNeMQ3HV9lChoBkdAb7Ch3aBZp2gHTacBaAhHQJpjD/aQFLZ1fZQoaAZHQG6QBZIQOFxoB00yAWgIR0CaZc3ai9IxdX2UKGgGR0Bx7VtNzr/saAdNXQFoCEdAmmesGkep43V9lChoBkdAcOghrFfiP2gHTXcBaAhHQJpptbcGkep1fZQoaAZHQG23fYBeXzFoB00kAWgIR0CabGL39JjEdX2UKGgGR0BvGmEXcgyNaAdNHQFoCEdAmm5H6dlNDnV9lChoBkdAQZnggow222gHS8loCEdAmm+90q6OHXV9lChoBkdAcAc1L8Jla2gHTSYBaAhHQJpzPriVB2R1fZQoaAZHQHGgVwLmZE5oB02OAWgIR0Cadk2wFC9idX2UKGgGR0Bj3VwT/Q0GaAdN6ANoCEdAmn0gKfFrEnV9lChoBkdAcH2Cih37lGgHTYcBaAhHQJp/MBIWgvl1fZQoaAZHQHFmSR4hUzdoB00kAWgIR0CagdzuF6AwdX2UKGgGR0Bumd5nlGPQaAdNEAFoCEdAmoNMUZeiSXV9lChoBkdAb4+LWI42j2gHTY0BaAhHQJqFaih37k51fZQoaAZHQG2H8+qzZ6FoB01JAWgIR0CaiE2GZeAvdX2UKGgGR0BxXZLcsUZfaAdN9gFoCEdAmor/tdAxBXV9lChoBkdAcX7IAwPAf2gHTSgBaAhHQJqMnwVj7Q91fZQoaAZHQHD3BL0z0pVoB00sAWgIR0Caj0i8WbgCdX2UKGgGR0BtgGb7TDwZaAdNMwFoCEdAmpDyad+Xq3V9lChoBkdAcd5B3Roh6mgHTTMBaAhHQJqSkSbpeNV1fZQoaAZHQHFcIWcjJMhoB02SAWgIR0CaleOTJQtSdX2UKGgGR0BwAQEZBLPEaAdNNQFoCEdAmpePfbblBHV9lChoBkdAb1fC9AX2umgHTXQBaAhHQJqZkU1yeZp1fZQoaAZHQERAHrQgLZ1oB0v4aAhHQJqcALBsQ/Z1fZQoaAZHQHDLOevpyIZoB02EAWgIR0Canh8JD3M7dX2UKGgGR0BuTyt9x6v8aAdNPgFoCEdAmqANknTiKnV9lChoBkdAcecsj3VTaWgHTUQBaAhHQJqjv1dxAB11fZQoaAZHQHGOplJ6IFhoB00hAWgIR0CapciILw4LdX2UKGgGR0BwxPqqwQlKaAdNjQFoCEdAmqjxzq8lHHV9lChoBkdAcBENnGsFMmgHTTgBaAhHQJqq3w2ETQF1fZQoaAZHQHAsOmaYu01oB00kAWgIR0CarY3BYV7AdX2UKGgGR0Bx1cegctGvaAdNQgFoCEdAmq9ARGtp23V9lChoBkdAcKV/pdKNAGgHTYYBaAhHQJqxXNbC79R1fZQoaAZHQG/vMC9ytFNoB01UAWgIR0CatDZ4Oc2BdX2UKGgGR0BsgXvfCQ9zaAdNXgFoCEdAmrYWHtWuHXV9lChoBkdAcYsRSgoPTWgHTUkBaAhHQJq33aCcwxp1fZQoaAZHQHD05blijL1oB002AWgIR0Cauqajvd/KdX2UKGgGR0BuMM3yZrpJaAdNGwFoCEdAmrwo7vG6w3V9lChoBkfADNMMZxaPjmgHS/5oCEdAmr2QSFoL5XV9lChoBkdANRM7Qswta2gHTSIBaAhHQJrAMuYhMal1fZQoaAZHQG35nwPRRdhoB01AAWgIR0Cawe/KyOaOdX2UKGgGR0BvSTBTGYKIaAdNWQFoCEdAmsPMcyWRinV9lChoBkdAcI60KJEYwmgHTTQBaAhHQJrGhrTH80l1fZQoaAZHQHC+3hS9/SZoB01eAWgIR0CayGSNOuaGdX2UKGgGR0Bk1FcSoOx0aAdN6ANoCEdAms7XG4qgAnV9lChoBkdAcVtyfthNNGgHTWEBaAhHQJrQuMrEtNB1fZQoaAZHQG1nJY1YQrdoB00wAWgIR0Ca0quqFRHgdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}