Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,56 @@
|
|
1 |
---
|
2 |
license: gpl-3.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: gpl-3.0
|
3 |
+
tags:
|
4 |
+
- DocVQA
|
5 |
+
- Document Question Answering
|
6 |
+
- Document Visual Question Answering
|
7 |
+
datasets:
|
8 |
+
- MP-DocVQA
|
9 |
+
language:
|
10 |
+
- en
|
11 |
---
|
12 |
+
|
13 |
+
# LayoutLMv3 base fine-tuned on MP-DocVQA
|
14 |
+
|
15 |
+
This is pretrained LayoutLMv3 from [Microsoft hub](https://huggingface.co/microsoft/layoutlmv3-base) and fine-tuned on Multipage DocVQA (MP-DocVQA) dataset.
|
16 |
+
|
17 |
+
|
18 |
+
This model was used as a baseline in [Hierarchical multimodal transformers for Multi-Page DocVQA](https://arxiv.org/pdf/2212.05935.pdf).
|
19 |
+
- Results on the MP-DocVQA dataset are reported in Table 2.
|
20 |
+
- Training hyperparameters can be found in Table 8 of Appendix D.
|
21 |
+
|
22 |
+
|
23 |
+
## How to use
|
24 |
+
|
25 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
26 |
+
|
27 |
+
```python
|
28 |
+
import torch
|
29 |
+
from transformers import LayoutLMv3Processor, LayoutLMv3ForQuestionAnswering
|
30 |
+
|
31 |
+
processor = LayoutLMv3Processor.from_pretrained("rubentito/layoutlmv3-base-mpdocvqa", apply_ocr=False)
|
32 |
+
model = LayoutLMv3ForQuestionAnswering.from_pretrained("rubentito/layoutlmv3-base-mpdocvqa")
|
33 |
+
|
34 |
+
image = Image.open("example.jpg").convert("RGB")
|
35 |
+
question = "Is this a question?"
|
36 |
+
context = ["Example"]
|
37 |
+
boxes = [0, 0, 1000, 1000] # This is an example bounding box covering the whole image.
|
38 |
+
document_encoding = processor(image, question, context, boxes=boxes, return_tensors="pt")
|
39 |
+
outputs = model(**document_encoding)
|
40 |
+
|
41 |
+
# Get the answer
|
42 |
+
start_idx = torch.argmax(outputs.start_logits, axis=1)
|
43 |
+
end_idx = torch.argmax(outputs.end_logits, axis=1)
|
44 |
+
answers = self.processor.tokenizer.decode(input_tokens[start_idx: end_idx+1]).strip()
|
45 |
+
```
|
46 |
+
|
47 |
+
## BibTeX entry
|
48 |
+
|
49 |
+
```tex
|
50 |
+
@article{tito2022hierarchical,
|
51 |
+
title={Hierarchical multimodal transformers for Multi-Page DocVQA},
|
52 |
+
author={Tito, Rub{\`e}n and Karatzas, Dimosthenis and Valveny, Ernest},
|
53 |
+
journal={arXiv preprint arXiv:2212.05935},
|
54 |
+
year={2022}
|
55 |
+
}
|
56 |
+
```
|