rubentito commited on
Commit
e9d4fec
1 Parent(s): 803eaf8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md CHANGED
@@ -1,3 +1,56 @@
1
  ---
2
  license: gpl-3.0
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: gpl-3.0
3
+ tags:
4
+ - DocVQA
5
+ - Document Question Answering
6
+ - Document Visual Question Answering
7
+ datasets:
8
+ - MP-DocVQA
9
+ language:
10
+ - en
11
  ---
12
+
13
+ # LayoutLMv3 base fine-tuned on MP-DocVQA
14
+
15
+ This is pretrained LayoutLMv3 from [Microsoft hub](https://huggingface.co/microsoft/layoutlmv3-base) and fine-tuned on Multipage DocVQA (MP-DocVQA) dataset.
16
+
17
+
18
+ This model was used as a baseline in [Hierarchical multimodal transformers for Multi-Page DocVQA](https://arxiv.org/pdf/2212.05935.pdf).
19
+ - Results on the MP-DocVQA dataset are reported in Table 2.
20
+ - Training hyperparameters can be found in Table 8 of Appendix D.
21
+
22
+
23
+ ## How to use
24
+
25
+ Here is how to use this model to get the features of a given text in PyTorch:
26
+
27
+ ```python
28
+ import torch
29
+ from transformers import LayoutLMv3Processor, LayoutLMv3ForQuestionAnswering
30
+
31
+ processor = LayoutLMv3Processor.from_pretrained("rubentito/layoutlmv3-base-mpdocvqa", apply_ocr=False)
32
+ model = LayoutLMv3ForQuestionAnswering.from_pretrained("rubentito/layoutlmv3-base-mpdocvqa")
33
+
34
+ image = Image.open("example.jpg").convert("RGB")
35
+ question = "Is this a question?"
36
+ context = ["Example"]
37
+ boxes = [0, 0, 1000, 1000] # This is an example bounding box covering the whole image.
38
+ document_encoding = processor(image, question, context, boxes=boxes, return_tensors="pt")
39
+ outputs = model(**document_encoding)
40
+
41
+ # Get the answer
42
+ start_idx = torch.argmax(outputs.start_logits, axis=1)
43
+ end_idx = torch.argmax(outputs.end_logits, axis=1)
44
+ answers = self.processor.tokenizer.decode(input_tokens[start_idx: end_idx+1]).strip()
45
+ ```
46
+
47
+ ## BibTeX entry
48
+
49
+ ```tex
50
+ @article{tito2022hierarchical,
51
+ title={Hierarchical multimodal transformers for Multi-Page DocVQA},
52
+ author={Tito, Rub{\`e}n and Karatzas, Dimosthenis and Valveny, Ernest},
53
+ journal={arXiv preprint arXiv:2212.05935},
54
+ year={2022}
55
+ }
56
+ ```