--- license: gpl-3.0 tags: - DocVQA - Document Question Answering - Document Visual Question Answering datasets: - MP-DocVQA language: - en --- # LayoutLMv3 base fine-tuned on MP-DocVQA This is pretrained LayoutLMv3 from [Microsoft hub](https://huggingface.co/microsoft/layoutlmv3-base) and fine-tuned on Multipage DocVQA (MP-DocVQA) dataset. This model was used as a baseline in [Hierarchical multimodal transformers for Multi-Page DocVQA](https://arxiv.org/pdf/2212.05935.pdf). - Results on the MP-DocVQA dataset are reported in Table 2. - Training hyperparameters can be found in Table 8 of Appendix D. ## How to use Here is how to use this model to get the features of a given text in PyTorch: ```python import torch from transformers import LayoutLMv3Processor, LayoutLMv3ForQuestionAnswering processor = LayoutLMv3Processor.from_pretrained("rubentito/layoutlmv3-base-mpdocvqa", apply_ocr=False) model = LayoutLMv3ForQuestionAnswering.from_pretrained("rubentito/layoutlmv3-base-mpdocvqa") image = Image.open("example.jpg").convert("RGB") question = "Is this a question?" context = ["Example"] boxes = [0, 0, 1000, 1000] # This is an example bounding box covering the whole image. document_encoding = processor(image, question, context, boxes=boxes, return_tensors="pt") outputs = model(**document_encoding) # Get the answer start_idx = torch.argmax(outputs.start_logits, axis=1) end_idx = torch.argmax(outputs.end_logits, axis=1) answers = self.processor.tokenizer.decode(input_tokens[start_idx: end_idx+1]).strip() ``` ## Model results Extended experimentation can be found in Table 2 of [Hierarchical multimodal transformers for Multi-Page DocVQA](https://arxiv.org/pdf/2212.05935.pdf). You can also check the live leaderboard at the [RRC Portal](https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=4). | Model | HF name | ANLS | APPA | |-----------------------------------------------------------------------------------|:--------------------------------------|:-------------:|:---------:| | [Bert-large](https://huggingface.co/rubentito/bert-large-mpdocvqa/tree/main) | rubentito/bert-large-mpdocvqa | 0.4183 | 51.6177 | | [Longformer-base](https://huggingface.co/rubentito/longformer-base-mpdocvqa) | rubentito/longformer-base-mpdocvqa | 0.5287 | 71.1696 | | [BigBird ITC base](https://huggingface.co/rubentito/bigbird-base-itc-mpdocvqa) | rubentito/bigbird-base-itc-mpdocvqa | 0.4929 | 67.5433 | | [**LayoutLMv3 base**](https://huggingface.co/rubentito/layoutlmv3-base-mpdocvqa) | rubentito/layoutlmv3-base-mpdocvqa | 0.4538 | 51.9426 | | [T5 base](https://huggingface.co/rubentito/t5-base-mpdocvqa) | rubentito/t5-base-mpdocvqa | 0.5050 | 0.0000 | | Hi-VT5 | TBA | 0.6201 | 79.23 | ## BibTeX entry ```tex @article{tito2022hierarchical, title={Hierarchical multimodal transformers for Multi-Page DocVQA}, author={Tito, Rub{\`e}n and Karatzas, Dimosthenis and Valveny, Ernest}, journal={arXiv preprint arXiv:2212.05935}, year={2022} } ```