File size: 3,192 Bytes
9c77c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aa006f
 
40fb23a
2aa006f
 
9c77c03
 
 
 
 
 
 
2d11369
9c77c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
license: llama3
model-index:
- name: Rubra-Meta-Llama-3-70B
  results:
  - task:
      type: text-generation
    dataset:
      type: MMLU
      name: MMLU
    metrics:
    - type: 5-shot
      value: 75.9
      verified: false
  - task:
      type: text-generation
    dataset:
      type: GPQA
      name: GPQA
    metrics:
    - type: 0-shot
      value: 33.93
      verified: false
  - task:
      type: text-generation
    dataset:
      type: GSM-8K
      name: GSM-8K
    metrics:
    - type: 8-shot, CoT
      value: 82.26
      verified: false
  - task:
      type: text-generation
    dataset:
      type: MATH
      name: MATH
    metrics:
    - type: 4-shot, CoT
      value: 34.24
      verified: false
  - task:
      type: text-generation
    dataset:
      type: MT-bench
      name: MT-bench
    metrics:
    - type: GPT-4 as Judge
      value: 8.36
      verified: false
tags:
- function-calling
- tool-calling
- agentic
- rubra
- conversational
language:
- en
---

# Rubra Llama-3 70B AWQ

Original model: [rubra-ai/Meta-Llama-3-70B-Instruct](https://huggingface.co/rubra-ai/Meta-Llama-3-70B-Instruct)

AWQ quant config:
```
{ "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }
```

## Model description
The model is the result of further post-training [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B). This model is designed for high performance in various instruction-following tasks and complex interactions, including multi-turn function calling and detailed conversations.

## Training Data
The model underwent additional training on a proprietary dataset encompassing diverse instruction-following, chat, and function calling data. This post-training process enhances the model's ability to integrate tools and manage complex interaction scenarios effectively.

## How to use
Refer to https://docs.rubra.ai/inference/transformers for usage. Feel free to ask/open issues up in our Github repo: https://github.com/rubra-ai/rubra 

## Limitations and Bias

While the model performs well on a wide range of tasks, it may still produce biased or incorrect outputs. Users should exercise caution and critical judgment when using the model in sensitive or high-stakes applications. The model's outputs are influenced by the data it was trained on, which may contain inherent biases.

## Ethical Considerations

Users should ensure that the deployment of this model adheres to ethical guidelines and consider the potential societal impact of the generated text. Misuse of the model for generating harmful or misleading content is strongly discouraged.

## Acknowledgements

We would like to thank Meta for the model.

## Contact Information

For questions or comments about the model, please reach out to [the rubra team](mailto:rubra@acorn.io).

## Citation

If you use this work, please cite it as:

```
@misc {rubra_ai_2024,
	author       = { Sanjay Nadhavajhala and Yingbei Tong },
	title        = { Rubra-Meta-Llama-3-70B-Instruct },
	year         = 2024,
	url          = { https://huggingface.co/rubra-ai/Meta-Llama-3-70B-Instruct },
	doi          = { 10.57967/hf/2643 },
	publisher    = { Hugging Face }
}
```