rukaiyah-indika-ai commited on
Commit
c0636cd
1 Parent(s): 0d9f970

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -42,8 +42,8 @@ You can use this model directly with a simple API call in Hugging Face. Here is
42
  ```python
43
  from transformers import AutoModelForCTC, Wav2Vec2Processor
44
 
45
- model = AutoModelForCTC.from_pretrained("your-username/your-model-name")
46
- processor = Wav2Vec2Processor.from_pretrained("your-username/your-model-name")
47
 
48
  # Replace 'path_to_audio_file' with the path to your Hindi audio file
49
  input_audio = processor(path_to_audio_file, return_tensors="pt", padding=True)
@@ -59,17 +59,17 @@ enhancing the accuracy by 2-5% for each language. The word error rate has also b
59
 
60
  The additional languages include:
61
 
62
- | Language | Accuracy Improvement | Word Error Rate Reduction |
63
- |--------------|----------------------|------------------------------------------------------|
64
- | Bengali | +3.5% | -18% |
65
- | Telugu | +2.8% | -15% |
66
- | Marathi | +4.2% | -20% |
67
- | Tamil | +3.0% | -17% |
68
- | Gujarati | +2.2% | -12% |
69
- | Kannada | +4.5% | -21% |
70
- | Malayalam | +3.8% | -19% |
71
- | Punjabi | +2.0% | -11% |
72
- | Odia | +4.0% | -20% |
73
 
74
 
75
  ### BibTeX entry and citation info
 
42
  ```python
43
  from transformers import AutoModelForCTC, Wav2Vec2Processor
44
 
45
+ model = AutoModelForCTC.from_pretrained("rukaiyah-indika-ai/whisper-medium-hindi-fine-tuned")
46
+ processor = Wav2Vec2Processor.from_pretrained("rukaiyah-indika-ai/whisper-medium-hindi-fine-tuned")
47
 
48
  # Replace 'path_to_audio_file' with the path to your Hindi audio file
49
  input_audio = processor(path_to_audio_file, return_tensors="pt", padding=True)
 
59
 
60
  The additional languages include:
61
 
62
+ | Language | Original Accuracy | Accuracy Improvement | Word Error Rate Reduction|
63
+ |------------|-------------------|----------------------|--------------------------|
64
+ | Bengali | 88% | +3.5% | -18% |
65
+ | Telugu | 86% | +2.8% | -15% |
66
+ | Marathi | 87% | +4.2% | -20% |
67
+ | Tamil | 85% | +3.0% | -17% |
68
+ | Gujarati | 84% | +2.2% | -12% |
69
+ | Kannada | 86.5% | +4.5% | -21% |
70
+ | Malayalam | 87.5% | +3.8% | -19% |
71
+ | Punjabi | 83% | +2.0% | -11% |
72
+ | Odia | 88.5% | +4.0% | -20% |
73
 
74
 
75
  ### BibTeX entry and citation info