russfischer commited on
Commit
3b1d6b9
1 Parent(s): 1e11c60

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: apparently east Asians commit less crime than us......well this is because
14
+ they are submissive conformist losers..WHITE POWER
15
+ - text: Because everyone knows this islam men is the devil
16
+ - text: Put a woman to abuse that fat woman and don’t put a kind guy
17
+ - text: She then suggests that the men who commented on her video should be killed.
18
+ - text: Most Americans are nazis or kkk members so they elected Trump.
19
+ inference: false
20
+ model-index:
21
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
22
+ results:
23
+ - task:
24
+ type: text-classification
25
+ name: Text Classification
26
+ dataset:
27
+ name: Unknown
28
+ type: unknown
29
+ split: test
30
+ metrics:
31
+ - type: accuracy
32
+ value: 0.3687002652519894
33
+ name: Accuracy
34
+ ---
35
+
36
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
37
+
38
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
39
+
40
+ The model has been trained using an efficient few-shot learning technique that involves:
41
+
42
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
43
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
50
+ - **Classification head:** a OneVsRestClassifier instance
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ <!-- - **Number of Classes:** Unknown -->
53
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
+
63
+ ## Evaluation
64
+
65
+ ### Metrics
66
+ | Label | Accuracy |
67
+ |:--------|:---------|
68
+ | **all** | 0.3687 |
69
+
70
+ ## Uses
71
+
72
+ ### Direct Use for Inference
73
+
74
+ First install the SetFit library:
75
+
76
+ ```bash
77
+ pip install setfit
78
+ ```
79
+
80
+ Then you can load this model and run inference.
81
+
82
+ ```python
83
+ from setfit import SetFitModel
84
+
85
+ # Download from the 🤗 Hub
86
+ model = SetFitModel.from_pretrained("russfischer/setfit-ethos-multilabel-example")
87
+ # Run inference
88
+ preds = model("Because everyone knows this islam men is the devil")
89
+ ```
90
+
91
+ <!--
92
+ ### Downstream Use
93
+
94
+ *List how someone could finetune this model on their own dataset.*
95
+ -->
96
+
97
+ <!--
98
+ ### Out-of-Scope Use
99
+
100
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
101
+ -->
102
+
103
+ <!--
104
+ ## Bias, Risks and Limitations
105
+
106
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
107
+ -->
108
+
109
+ <!--
110
+ ### Recommendations
111
+
112
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
113
+ -->
114
+
115
+ ## Training Details
116
+
117
+ ### Training Set Metrics
118
+ | Training set | Min | Median | Max |
119
+ |:-------------|:----|:--------|:----|
120
+ | Word count | 2 | 17.5469 | 73 |
121
+
122
+ ### Training Hyperparameters
123
+ - batch_size: (16, 16)
124
+ - num_epochs: (1, 1)
125
+ - max_steps: -1
126
+ - sampling_strategy: oversampling
127
+ - num_iterations: 20
128
+ - body_learning_rate: (2e-05, 2e-05)
129
+ - head_learning_rate: 2e-05
130
+ - loss: CosineSimilarityLoss
131
+ - distance_metric: cosine_distance
132
+ - margin: 0.25
133
+ - end_to_end: False
134
+ - use_amp: False
135
+ - warmup_proportion: 0.1
136
+ - seed: 42
137
+ - eval_max_steps: -1
138
+ - load_best_model_at_end: False
139
+
140
+ ### Training Results
141
+ | Epoch | Step | Training Loss | Validation Loss |
142
+ |:------:|:----:|:-------------:|:---------------:|
143
+ | 0.0063 | 1 | 0.3311 | - |
144
+ | 0.3125 | 50 | 0.185 | - |
145
+ | 0.625 | 100 | 0.0961 | - |
146
+ | 0.9375 | 150 | 0.0916 | - |
147
+
148
+ ### Framework Versions
149
+ - Python: 3.10.12
150
+ - SetFit: 1.0.3
151
+ - Sentence Transformers: 3.0.1
152
+ - Transformers: 4.39.0
153
+ - PyTorch: 2.3.0+cu121
154
+ - Datasets: 2.20.0
155
+ - Tokenizers: 0.15.2
156
+
157
+ ## Citation
158
+
159
+ ### BibTeX
160
+ ```bibtex
161
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
162
+ doi = {10.48550/ARXIV.2209.11055},
163
+ url = {https://arxiv.org/abs/2209.11055},
164
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
165
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
166
+ title = {Efficient Few-Shot Learning Without Prompts},
167
+ publisher = {arXiv},
168
+ year = {2022},
169
+ copyright = {Creative Commons Attribution 4.0 International}
170
+ }
171
+ ```
172
+
173
+ <!--
174
+ ## Glossary
175
+
176
+ *Clearly define terms in order to be accessible across audiences.*
177
+ -->
178
+
179
+ <!--
180
+ ## Model Card Authors
181
+
182
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
183
+ -->
184
+
185
+ <!--
186
+ ## Model Card Contact
187
+
188
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
189
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85559c986d45e04bd4917d6ef86874df1df45af8f5887b0fe71b44dea1396779
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab6a8a0a811ee4effbcd884a0ff81cd1f536c7b367ad6e5746a7bb0c3e473c97
3
+ size 52836
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff