Update README.md
Browse filesnote : use original open llama tokenizer
#model_path = 'openlm-research/open_llama_3b'
model_path = 'ruwan/open-llama-sharded-1GB-7B-alpaca-vmware'
# model_path = 'openlm-research/open_llama_13b_600bt'
tokenizer = LlamaTokenizer.from_pretrained("openlm-research/open_llama_7b")
model = LlamaForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float16, device_map='auto',load_in_8bit=True
)
prompt_template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
prompt= 'Explain in simple terms how the attention mechanism of a transformer model works'
inputt = prompt_template.format(instruction= prompt)
input_ids = tokenizer(inputt, return_tensors="pt").input_ids.to("cuda")
output1 = model.generate(input_ids, max_length=512)
input_length = input_ids.shape[1]
output1 = output1[:, input_length:]
output= tokenizer.decode(output1[0])
@@ -1,27 +1,3 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
-
note : use original open llama tokenizer
|
5 |
-
|
6 |
-
#model_path = 'openlm-research/open_llama_3b'
|
7 |
-
model_path = 'ruwan/open-llama-sharded-1GB-7B-alpaca-vmware'
|
8 |
-
# model_path = 'openlm-research/open_llama_13b_600bt'
|
9 |
-
|
10 |
-
tokenizer = LlamaTokenizer.from_pretrained("openlm-research/open_llama_7b")
|
11 |
-
model = LlamaForCausalLM.from_pretrained(
|
12 |
-
model_path, torch_dtype=torch.float16, device_map='auto',load_in_8bit=True
|
13 |
-
)
|
14 |
-
|
15 |
-
|
16 |
-
prompt_template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
|
17 |
-
|
18 |
-
prompt= 'Explain in simple terms how the attention mechanism of a transformer model works'
|
19 |
-
|
20 |
-
|
21 |
-
inputt = prompt_template.format(instruction= prompt)
|
22 |
-
input_ids = tokenizer(inputt, return_tensors="pt").input_ids.to("cuda")
|
23 |
-
|
24 |
-
output1 = model.generate(input_ids, max_length=512)
|
25 |
-
input_length = input_ids.shape[1]
|
26 |
-
output1 = output1[:, input_length:]
|
27 |
-
output= tokenizer.decode(output1[0])
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|