Update README.md
Browse files
README.md
CHANGED
@@ -21,183 +21,78 @@ This modelcard aims to be a base template for new models. It has been generated
|
|
21 |
|
22 |
|
23 |
|
24 |
-
- **Developed by:**
|
25 |
-
- **
|
26 |
-
- **
|
27 |
-
- **
|
28 |
-
- **
|
29 |
-
- **License:** [More Information Needed]
|
30 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
31 |
|
32 |
-
### Model Sources [optional]
|
33 |
-
|
34 |
-
<!-- Provide the basic links for the model. -->
|
35 |
-
|
36 |
-
- **Repository:** [More Information Needed]
|
37 |
-
- **Paper [optional]:** [More Information Needed]
|
38 |
-
- **Demo [optional]:** [More Information Needed]
|
39 |
|
40 |
## Uses
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
### Direct Use
|
45 |
-
|
46 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
47 |
-
|
48 |
-
[More Information Needed]
|
49 |
-
|
50 |
-
### Downstream Use [optional]
|
51 |
-
|
52 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
53 |
-
|
54 |
-
[More Information Needed]
|
55 |
-
|
56 |
-
### Out-of-Scope Use
|
57 |
|
58 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
59 |
-
|
60 |
-
[More Information Needed]
|
61 |
|
62 |
## Bias, Risks, and Limitations
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
[More Information Needed]
|
67 |
-
|
68 |
-
### Recommendations
|
69 |
-
|
70 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
71 |
|
72 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
73 |
|
74 |
## How to Get Started with the Model
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
## Training Details
|
81 |
|
82 |
### Training Data
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
[More Information Needed]
|
87 |
|
88 |
### Training Procedure
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
#### Preprocessing [optional]
|
93 |
-
|
94 |
-
[More Information Needed]
|
95 |
-
|
96 |
-
|
97 |
-
#### Training Hyperparameters
|
98 |
-
|
99 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
100 |
-
|
101 |
-
#### Speeds, Sizes, Times [optional]
|
102 |
-
|
103 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
104 |
-
|
105 |
-
[More Information Needed]
|
106 |
-
|
107 |
-
## Evaluation
|
108 |
-
|
109 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
110 |
-
|
111 |
-
### Testing Data, Factors & Metrics
|
112 |
-
|
113 |
-
#### Testing Data
|
114 |
-
|
115 |
-
<!-- This should link to a Dataset Card if possible. -->
|
116 |
-
|
117 |
-
[More Information Needed]
|
118 |
-
|
119 |
-
#### Factors
|
120 |
-
|
121 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
122 |
-
|
123 |
-
[More Information Needed]
|
124 |
-
|
125 |
-
#### Metrics
|
126 |
-
|
127 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
128 |
|
129 |
-
[More Information Needed]
|
130 |
|
131 |
### Results
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
[More Information Needed]
|
144 |
-
|
145 |
-
## Environmental Impact
|
146 |
-
|
147 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
148 |
-
|
149 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
150 |
-
|
151 |
-
- **Hardware Type:** [More Information Needed]
|
152 |
-
- **Hours used:** [More Information Needed]
|
153 |
-
- **Cloud Provider:** [More Information Needed]
|
154 |
-
- **Compute Region:** [More Information Needed]
|
155 |
-
- **Carbon Emitted:** [More Information Needed]
|
156 |
-
|
157 |
-
## Technical Specifications [optional]
|
158 |
-
|
159 |
-
### Model Architecture and Objective
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
### Compute Infrastructure
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Hardware
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
#### Software
|
172 |
-
|
173 |
-
[More Information Needed]
|
174 |
-
|
175 |
-
## Citation [optional]
|
176 |
-
|
177 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
178 |
-
|
179 |
-
**BibTeX:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
**APA:**
|
184 |
-
|
185 |
-
[More Information Needed]
|
186 |
-
|
187 |
-
## Glossary [optional]
|
188 |
-
|
189 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## More Information [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Authors [optional]
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
## Model Card Contact
|
202 |
-
|
203 |
-
[More Information Needed]
|
|
|
21 |
|
22 |
|
23 |
|
24 |
+
- **Developed by:** **விபின்**
|
25 |
+
- **Model type:** T5-small
|
26 |
+
- **Language(s) (NLP):** English
|
27 |
+
- **License:** Apache 2.0 license
|
28 |
+
- **Finetuned from model [optional]:** T5-small model
|
|
|
|
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
## Uses
|
32 |
|
33 |
+
This model aims to respond with extractive and abstractive keyphrases for the given content. Kindly use "find keyphrase: " as the task prefix prompt to get the desired outputs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
|
|
|
|
|
|
35 |
|
36 |
## Bias, Risks, and Limitations
|
37 |
|
38 |
+
This model response is based on the inputs given to it. So if any Harmful sentences given to this model, it will respond according to that.
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
40 |
|
41 |
## How to Get Started with the Model
|
42 |
|
43 |
+
```
|
44 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
45 |
+
import torch
|
46 |
+
|
47 |
+
model_dir = "rv2307/keyphrase-abstraction-t5-small"
|
48 |
+
tokenizer = T5Tokenizer.from_pretrained(model_dir)
|
49 |
+
model = T5ForConditionalGeneration.from_pretrained(model_dir, torch_dtype=torch.bfloat16)
|
50 |
+
device = "cuda"
|
51 |
+
model.to(device)
|
52 |
+
|
53 |
+
def generate(text):
|
54 |
+
|
55 |
+
text = "find keyphrase: " + text
|
56 |
+
inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
57 |
+
inputs = {k:v.to(model.device) for k,v in inputs.items()}
|
58 |
+
|
59 |
+
|
60 |
+
with torch.no_grad():
|
61 |
+
outputs = model.generate(
|
62 |
+
inputs['input_ids'],
|
63 |
+
attention_mask=inputs['attention_mask'],
|
64 |
+
max_length=100,
|
65 |
+
use_cache=True
|
66 |
+
)
|
67 |
+
|
68 |
+
output_list = tokenizer.decode(outputs[0],skip_special_tokens=True)
|
69 |
+
|
70 |
+
return output_list
|
71 |
+
|
72 |
+
content = "Hi, How are you??"
|
73 |
+
outputs = generate(content)
|
74 |
+
print(outputs)
|
75 |
+
```
|
76 |
|
77 |
## Training Details
|
78 |
|
79 |
### Training Data
|
80 |
|
81 |
+
Mostly used open source datasets for these tasks, which are already available on the huggingface.
|
|
|
|
|
82 |
|
83 |
### Training Procedure
|
84 |
|
85 |
+
This model has been fine tuned for 6 epochs with 40k datasets collected from the internet.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
|
|
87 |
|
88 |
### Results
|
89 |
|
90 |
+
```
|
91 |
+
Epoch Training Loss Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
|
92 |
+
1 0.105800 0.087497 43.840900 19.029900 40.303200 40.320300 16.306200
|
93 |
+
2 0.097600 0.081029 46.335000 21.246800 42.377400 42.387500 16.404900
|
94 |
+
3 0.091800 0.077546 47.721200 22.467200 43.622400 43.632000 16.308200
|
95 |
+
4 0.087600 0.075441 48.633700 23.351300 44.493800 44.504300 16.359000
|
96 |
+
5 0.088200 0.074088 48.977500 23.747000 44.804900 44.813200 16.300500
|
97 |
+
6 0.084900 0.073381 49.347300 24.029500 45.097100 45.108300 16.332600
|
98 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|