rv2307 commited on
Commit
ab72170
1 Parent(s): d97e85d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -156
README.md CHANGED
@@ -21,183 +21,78 @@ This modelcard aims to be a base template for new models. It has been generated
21
 
22
 
23
 
24
- - **Developed by:** [More Information Needed]
25
- - **Funded by [optional]:** [More Information Needed]
26
- - **Shared by [optional]:** [More Information Needed]
27
- - **Model type:** [More Information Needed]
28
- - **Language(s) (NLP):** [More Information Needed]
29
- - **License:** [More Information Needed]
30
- - **Finetuned from model [optional]:** [More Information Needed]
31
 
32
- ### Model Sources [optional]
33
-
34
- <!-- Provide the basic links for the model. -->
35
-
36
- - **Repository:** [More Information Needed]
37
- - **Paper [optional]:** [More Information Needed]
38
- - **Demo [optional]:** [More Information Needed]
39
 
40
  ## Uses
41
 
42
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
43
-
44
- ### Direct Use
45
-
46
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
47
-
48
- [More Information Needed]
49
-
50
- ### Downstream Use [optional]
51
-
52
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
53
-
54
- [More Information Needed]
55
-
56
- ### Out-of-Scope Use
57
 
58
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
59
-
60
- [More Information Needed]
61
 
62
  ## Bias, Risks, and Limitations
63
 
64
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
65
-
66
- [More Information Needed]
67
-
68
- ### Recommendations
69
-
70
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
71
 
72
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
73
 
74
  ## How to Get Started with the Model
75
 
76
- Use the code below to get started with the model.
77
-
78
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
  ## Training Details
81
 
82
  ### Training Data
83
 
84
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
85
-
86
- [More Information Needed]
87
 
88
  ### Training Procedure
89
 
90
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
91
-
92
- #### Preprocessing [optional]
93
-
94
- [More Information Needed]
95
-
96
-
97
- #### Training Hyperparameters
98
-
99
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
100
-
101
- #### Speeds, Sizes, Times [optional]
102
-
103
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
104
-
105
- [More Information Needed]
106
-
107
- ## Evaluation
108
-
109
- <!-- This section describes the evaluation protocols and provides the results. -->
110
-
111
- ### Testing Data, Factors & Metrics
112
-
113
- #### Testing Data
114
-
115
- <!-- This should link to a Dataset Card if possible. -->
116
-
117
- [More Information Needed]
118
-
119
- #### Factors
120
-
121
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
122
-
123
- [More Information Needed]
124
-
125
- #### Metrics
126
-
127
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
128
 
129
- [More Information Needed]
130
 
131
  ### Results
132
 
133
- [More Information Needed]
134
-
135
- #### Summary
136
-
137
-
138
-
139
- ## Model Examination [optional]
140
-
141
- <!-- Relevant interpretability work for the model goes here -->
142
-
143
- [More Information Needed]
144
-
145
- ## Environmental Impact
146
-
147
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
148
-
149
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
150
-
151
- - **Hardware Type:** [More Information Needed]
152
- - **Hours used:** [More Information Needed]
153
- - **Cloud Provider:** [More Information Needed]
154
- - **Compute Region:** [More Information Needed]
155
- - **Carbon Emitted:** [More Information Needed]
156
-
157
- ## Technical Specifications [optional]
158
-
159
- ### Model Architecture and Objective
160
-
161
- [More Information Needed]
162
-
163
- ### Compute Infrastructure
164
-
165
- [More Information Needed]
166
-
167
- #### Hardware
168
-
169
- [More Information Needed]
170
-
171
- #### Software
172
-
173
- [More Information Needed]
174
-
175
- ## Citation [optional]
176
-
177
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
178
-
179
- **BibTeX:**
180
-
181
- [More Information Needed]
182
-
183
- **APA:**
184
-
185
- [More Information Needed]
186
-
187
- ## Glossary [optional]
188
-
189
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
190
-
191
- [More Information Needed]
192
-
193
- ## More Information [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Authors [optional]
198
-
199
- [More Information Needed]
200
-
201
- ## Model Card Contact
202
-
203
- [More Information Needed]
 
21
 
22
 
23
 
24
+ - **Developed by:** **விபின்**
25
+ - **Model type:** T5-small
26
+ - **Language(s) (NLP):** English
27
+ - **License:** Apache 2.0 license
28
+ - **Finetuned from model [optional]:** T5-small model
 
 
29
 
 
 
 
 
 
 
 
30
 
31
  ## Uses
32
 
33
+ This model aims to respond with extractive and abstractive keyphrases for the given content. Kindly use "find keyphrase: " as the task prefix prompt to get the desired outputs.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
 
 
 
35
 
36
  ## Bias, Risks, and Limitations
37
 
38
+ This model response is based on the inputs given to it. So if any Harmful sentences given to this model, it will respond according to that.
 
 
 
 
 
 
39
 
 
40
 
41
  ## How to Get Started with the Model
42
 
43
+ ```
44
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
45
+ import torch
46
+
47
+ model_dir = "rv2307/keyphrase-abstraction-t5-small"
48
+ tokenizer = T5Tokenizer.from_pretrained(model_dir)
49
+ model = T5ForConditionalGeneration.from_pretrained(model_dir, torch_dtype=torch.bfloat16)
50
+ device = "cuda"
51
+ model.to(device)
52
+
53
+ def generate(text):
54
+
55
+ text = "find keyphrase: " + text
56
+ inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
57
+ inputs = {k:v.to(model.device) for k,v in inputs.items()}
58
+
59
+
60
+ with torch.no_grad():
61
+ outputs = model.generate(
62
+ inputs['input_ids'],
63
+ attention_mask=inputs['attention_mask'],
64
+ max_length=100,
65
+ use_cache=True
66
+ )
67
+
68
+ output_list = tokenizer.decode(outputs[0],skip_special_tokens=True)
69
+
70
+ return output_list
71
+
72
+ content = "Hi, How are you??"
73
+ outputs = generate(content)
74
+ print(outputs)
75
+ ```
76
 
77
  ## Training Details
78
 
79
  ### Training Data
80
 
81
+ Mostly used open source datasets for these tasks, which are already available on the huggingface.
 
 
82
 
83
  ### Training Procedure
84
 
85
+ This model has been fine tuned for 6 epochs with 40k datasets collected from the internet.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
 
 
87
 
88
  ### Results
89
 
90
+ ```
91
+ Epoch Training Loss Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
92
+ 1 0.105800 0.087497 43.840900 19.029900 40.303200 40.320300 16.306200
93
+ 2 0.097600 0.081029 46.335000 21.246800 42.377400 42.387500 16.404900
94
+ 3 0.091800 0.077546 47.721200 22.467200 43.622400 43.632000 16.308200
95
+ 4 0.087600 0.075441 48.633700 23.351300 44.493800 44.504300 16.359000
96
+ 5 0.088200 0.074088 48.977500 23.747000 44.804900 44.813200 16.300500
97
+ 6 0.084900 0.073381 49.347300 24.029500 45.097100 45.108300 16.332600
98
+ ```