rwheel commited on
Commit
5c620cd
1 Parent(s): d1fc8fe

Upload PPO trained agent for LunarLander environment

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 254.25 +/- 26.51
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 287.60 +/- 14.46
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc978f6d5e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc978f6d670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc978f6d700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc978f6d790>", "_build": "<function ActorCriticPolicy._build at 0x7fc978f6d820>", "forward": "<function ActorCriticPolicy.forward at 0x7fc978f6d8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc978f6d940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc978f6d9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc978f6da60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc978f6daf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc978f6db80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc978f62e40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670856113826937471, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2Otr0BOaI/Tbsrvr2RrL69mAC+s009vgAAAAAAAAAAGl2YvmvGSj8HLRA9+vqNvoL2fL44s3U+AAAAAAAAAADNiGA9cGaNP28FtD3SgYe+3IG9O4TkNbsAAAAAAAAAADOzJzphccQ7MK8rvszuYL7Ib1o7hbppPQAAAAAAAAAAM24ivkXKXz+mIP89Ig6Yvqbf+L2iUhE+AAAAAAAAAAAz5KS8zgOhPi9Fjrz5EXG+R5RAvS191b0AAAAAAAAAAOapgb2lKKY+2rWRPY7Kh74VPGq9OFcNvgAAAAAAAAAAANEhPpFqwD6Y+22+kjh9vowtdjx4RfQ8AAAAAAAAAAAN120+iUn7PpJoQbwLmqy+ZFbrPY0Oe7wAAAAAAAAAAJqJmroGNs0+Ey2BvBMKib5rZaW8tqjmPQAAAAAAAAAAmjWHu+HOlLq2yCsztq5SKr+FBjswf8+zAACAPwAAgD96Iy8+69y9P5LCCD9XhIa+xrwHPhw9lz4AAAAAAAAAABrRqL3b/kU/YKfOPVOMo76YdQi9JttoPQAAAAAAAAAAM3LVvE+Qnz+joJ29o9CuvsoRfr2gO/y9AAAAAAAAAACmb5O9e8ccP6CA0z0lHY6+VeGhvBqeTD0AAAAAAAAAADOTUjspJHS6gul6uc/jVbQstm+7O7SSOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8ItLVVq9cUCUhpRSlIwBbJRNHAGMAXSUR0CX6tRDkU9IdX2UKGgGaAloD0MIg4qqX2kjcECUhpRSlGgVTUwBaBZHQJfq7n8sMAp1fZQoaAZoCWgPQwhws3ixsCFtQJSGlFKUaBVNOgFoFkdAl+zhnFo+OnV9lChoBmgJaA9DCL/S+fCs3W9AlIaUUpRoFU0PAWgWR0CX7U1EVnEmdX2UKGgGaAloD0MIiIBDqFIeckCUhpRSlGgVTU4BaBZHQJfubFERaox1fZQoaAZoCWgPQwhlxXB1gJxwQJSGlFKUaBVNFAFoFkdAl+7aUzKs+3V9lChoBmgJaA9DCMGLvoI0Ym5AlIaUUpRoFU0cAWgWR0CX7v1zhgmadX2UKGgGaAloD0MIC+vGu6PdbUCUhpRSlGgVTWUBaBZHQJfvUmD15B11fZQoaAZoCWgPQwhqpKXyNj5wQJSGlFKUaBVNBwFoFkdAl++EPtlZo3V9lChoBmgJaA9DCNpU3SNbTnFAlIaUUpRoFU0sAWgWR0CX8KDiwSrYdX2UKGgGaAloD0MIqJAr9SzickCUhpRSlGgVTS4BaBZHQJfwuZBsyi51fZQoaAZoCWgPQwjURnU6kIZxQJSGlFKUaBVNTwFoFkdAl/FARTS9d3V9lChoBmgJaA9DCGRZMPGHzXBAlIaUUpRoFU0UAWgWR0CX8bWvr4WUdX2UKGgGaAloD0MIL4mzIuoQcECUhpRSlGgVTRkBaBZHQJfx5A2Q4jt1fZQoaAZoCWgPQwhsQlpj0M9uQJSGlFKUaBVNIAFoFkdAl/PsJMQEp3V9lChoBmgJaA9DCAzlRLvKVXJAlIaUUpRoFU1LAWgWR0CX9WR28qWkdX2UKGgGaAloD0MIn47HDNQzcECUhpRSlGgVTWsBaBZHQJf1wwQDmr91fZQoaAZoCWgPQwhEaW/whZplQJSGlFKUaBVN6ANoFkdAl/X/jGT9sXV9lChoBmgJaA9DCPhvXpw4gHBAlIaUUpRoFU0zAWgWR0CX9n6InBtUdX2UKGgGaAloD0MIx4Ds9W4db0CUhpRSlGgVTTcBaBZHQJf2/1UVBUt1fZQoaAZoCWgPQwhy4NVyZ0VxQJSGlFKUaBVNKwFoFkdAl/gIuGsV+XV9lChoBmgJaA9DCE4lA0CV1m5AlIaUUpRoFU0vAWgWR0CX+KKbrkbQdX2UKGgGaAloD0MIwJZXrvcycUCUhpRSlGgVTT4BaBZHQJf4yzhP0qZ1fZQoaAZoCWgPQwiqZWt90aNxQJSGlFKUaBVNWwFoFkdAl/k1KbrkbXV9lChoBmgJaA9DCKzlzkxw8HBAlIaUUpRoFU0iAWgWR0CX+cTkhib2dX2UKGgGaAloD0MI7dgIxGvwcUCUhpRSlGgVTU4BaBZHQJf52yQgcLl1fZQoaAZoCWgPQwhO7KF9LHtvQJSGlFKUaBVNUAFoFkdAl/r0ELYwqXV9lChoBmgJaA9DCIiBrn0Bxm9AlIaUUpRoFU0VAWgWR0CX/KUZvUBodX2UKGgGaAloD0MIwFyLFiAebUCUhpRSlGgVTXYBaBZHQJf8xZpztC11fZQoaAZoCWgPQwhRiIBDqCJGQJSGlFKUaBVL7WgWR0CX/ljIJZ4fdX2UKGgGaAloD0MIuqRquwnobUCUhpRSlGgVTQ4BaBZHQJf+aruIAOt1fZQoaAZoCWgPQwhb64uEtk9sQJSGlFKUaBVNLgFoFkdAl/7ZSBK+SXV9lChoBmgJaA9DCGL3HcOjEHNAlIaUUpRoFU1MAWgWR0CYACQPZqVRdX2UKGgGaAloD0MImdh8XNtqckCUhpRSlGgVTUoBaBZHQJgA0M/hVEN1fZQoaAZoCWgPQwi71Aj9TIZvQJSGlFKUaBVNHQFoFkdAmAGumelKsnV9lChoBmgJaA9DCEeOdAYGSnBAlIaUUpRoFU0IAWgWR0CYAhE4ecQRdX2UKGgGaAloD0MI0xQBTq/zcUCUhpRSlGgVTUsBaBZHQJgCcZQ53kh1fZQoaAZoCWgPQwiefeVB+opxQJSGlFKUaBVNHAFoFkdAmAKZGz8gp3V9lChoBmgJaA9DCK1sH/IWWm5AlIaUUpRoFU1BAWgWR0CYAq/gBLf2dX2UKGgGaAloD0MI+kMzT25/cUCUhpRSlGgVTVwBaBZHQJgD+j9GZu11fZQoaAZoCWgPQwim0HmN3dBuQJSGlFKUaBVNKQFoFkdAmAQ0ZWJaaHV9lChoBmgJaA9DCEfKFkk7eHFAlIaUUpRoFU1cAmgWR0CYBFuJDVpcdX2UKGgGaAloD0MIJA1ua0s4ckCUhpRSlGgVTRsBaBZHQJgFQ6XBxgl1fZQoaAZoCWgPQwhRoE/kSa1uQJSGlFKUaBVNIAFoFkdAmAV8Vk+X7nV9lChoBmgJaA9DCAcoDTVKg3BAlIaUUpRoFU0mAWgWR0CYB4G+9Jz1dX2UKGgGaAloD0MI7rPKTKmWckCUhpRSlGgVTTgBaBZHQJgHogKWszV1fZQoaAZoCWgPQwi8saAwKPBwQJSGlFKUaBVNPAFoFkdAmAewokRjBnV9lChoBmgJaA9DCMCzPXpDkmxAlIaUUpRoFU0hAWgWR0CYG9/ffoA5dX2UKGgGaAloD0MImQ0yyUg+ckCUhpRSlGgVTQgBaBZHQJgb56Z6Uqx1fZQoaAZoCWgPQwjPTZtxWn1wQJSGlFKUaBVNIAFoFkdAmB0K8L8aXXV9lChoBmgJaA9DCMozL4cdoXJAlIaUUpRoFU0ZAWgWR0CYHTNrCWNWdX2UKGgGaAloD0MIITtvY7NVbUCUhpRSlGgVTScBaBZHQJgd58NQTEl1fZQoaAZoCWgPQwhPle8ZCSNxQJSGlFKUaBVNLQFoFkdAmB3/c32mHnV9lChoBmgJaA9DCE35EFQNenJAlIaUUpRoFU0rAWgWR0CYH2ZiNKh+dX2UKGgGaAloD0MIyFwZVBtNcECUhpRSlGgVTS8BaBZHQJgfy2G7Bft1fZQoaAZoCWgPQwgNVMa/jx9yQJSGlFKUaBVNQQFoFkdAmCCRzJZGKHV9lChoBmgJaA9DCLRYiuSr63FAlIaUUpRoFU1KAWgWR0CYIhisny/cdX2UKGgGaAloD0MIHRzsTUwAckCUhpRSlGgVS/5oFkdAmCKEvXbudHV9lChoBmgJaA9DCGAA4UPJO3FAlIaUUpRoFU0MAWgWR0CYIvUsFt9AdX2UKGgGaAloD0MIorJhTWV5PkCUhpRSlGgVS9toFkdAmCMSHVPN3XV9lChoBmgJaA9DCOSFdHiInWFAlIaUUpRoFU3oA2gWR0CYI3Ju2qkudX2UKGgGaAloD0MI8MAAwgepb0CUhpRSlGgVTTgBaBZHQJgkZIMBp6B1fZQoaAZoCWgPQwgD0v4HWOZwQJSGlFKUaBVNAwFoFkdAmCSHz6JqI3V9lChoBmgJaA9DCPW+8bVnym5AlIaUUpRoFU0TAWgWR0CYJioQnQY2dX2UKGgGaAloD0MIj3HFxdEAbkCUhpRSlGgVTTEBaBZHQJgnXoRqXWx1fZQoaAZoCWgPQwh4YWu2MqhyQJSGlFKUaBVNIQFoFkdAmCetpRGc4HV9lChoBmgJaA9DCOogrweTMHJAlIaUUpRoFU0rAWgWR0CYKbfCQ9zPdX2UKGgGaAloD0MI3bbvUX8TcECUhpRSlGgVTWIBaBZHQJgp8y0rsjV1fZQoaAZoCWgPQwj1aRX94YtwQJSGlFKUaBVNKQFoFkdAmCoXpfQa73V9lChoBmgJaA9DCLDiVGthU3NAlIaUUpRoFU0eAWgWR0CYLDShrWRSdX2UKGgGaAloD0MI7Sx6p4IJbkCUhpRSlGgVTU4BaBZHQJgsXel9Brx1fZQoaAZoCWgPQwiSzyueOgRwQJSGlFKUaBVNDAFoFkdAmCyTxPO6d3V9lChoBmgJaA9DCMl2vp+a2nJAlIaUUpRoFU0tAWgWR0CYLTpFkQPJdX2UKGgGaAloD0MIYHMOnolWcECUhpRSlGgVTTYBaBZHQJgt+u5jH4p1fZQoaAZoCWgPQwivl6YI8BduQJSGlFKUaBVNHAFoFkdAmC6V41P3z3V9lChoBmgJaA9DCE87/DVZO3JAlIaUUpRoFU2nAmgWR0CYLsrYGt6pdX2UKGgGaAloD0MIc2n8witqckCUhpRSlGgVTVoBaBZHQJgvllnRLK51fZQoaAZoCWgPQwge4h+2dGhxQJSGlFKUaBVNTQFoFkdAmDACGahHsnV9lChoBmgJaA9DCGlU4GTbgHBAlIaUUpRoFU0WAWgWR0CYMQ8mrsBydX2UKGgGaAloD0MIp3Ub1D5XcUCUhpRSlGgVTRMBaBZHQJgxQ5jpcHJ1fZQoaAZoCWgPQwihn6nXbXZwQJSGlFKUaBVNTgFoFkdAmDG1bu+h5HV9lChoBmgJaA9DCI+n5QcuFXFAlIaUUpRoFUvzaBZHQJgyIZ1mrbR1fZQoaAZoCWgPQwgwDcNHxBJLQJSGlFKUaBVL+GgWR0CYMmWuX/o8dX2UKGgGaAloD0MIlKRrJt9aV0CUhpRSlGgVTegDaBZHQJgy/rVvuPV1fZQoaAZoCWgPQwjvOhvyDxhyQJSGlFKUaBVNQwFoFkdAmDQemBOHnHV9lChoBmgJaA9DCLu04bD0cXJAlIaUUpRoFUv9aBZHQJg0SrBCUot1fZQoaAZoCWgPQwhd+wJ6oatyQJSGlFKUaBVNKQFoFkdAmDU7amGdqnV9lChoBmgJaA9DCGPUtfb++3JAlIaUUpRoFU1TAWgWR0CYNow7T2FndX2UKGgGaAloD0MIhXzQsxnUckCUhpRSlGgVTS0BaBZHQJg2u4tpVS51fZQoaAZoCWgPQwgi36XUJbNxQJSGlFKUaBVNSgFoFkdAmDb3HvMKTnV9lChoBmgJaA9DCIzWUdWEnHBAlIaUUpRoFU0hAWgWR0CYNxQSzw+ddX2UKGgGaAloD0MIB0KygAkWc0CUhpRSlGgVTSsBaBZHQJg3LzK9wm51fZQoaAZoCWgPQwjpfk5BfmxwQJSGlFKUaBVNHQFoFkdAmDefIfbKzXV9lChoBmgJaA9DCGK7e4AuUXFAlIaUUpRoFU0IAWgWR0CYOQcuJ1q4dX2UKGgGaAloD0MIYMjqVo9ickCUhpRSlGgVTUABaBZHQJg5Bu1ndwh1fZQoaAZoCWgPQwh33PC7aT1vQJSGlFKUaBVL/GgWR0CYOR44ZMtcdX2UKGgGaAloD0MIJ9h/nZv6cECUhpRSlGgVTTsBaBZHQJg5+XRgJC11fZQoaAZoCWgPQwjOiqiJPhlHQJSGlFKUaBVLtmgWR0CYOkovBacJdX2UKGgGaAloD0MIu0c2V80NbUCUhpRSlGgVTSQBaBZHQJg6YlByCFt1fZQoaAZoCWgPQwg5gH7fv29yQJSGlFKUaBVNFQFoFkdAmDqKFh5PdnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc978f6d5e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc978f6d670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc978f6d700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc978f6d790>", "_build": "<function ActorCriticPolicy._build at 0x7fc978f6d820>", "forward": "<function ActorCriticPolicy.forward at 0x7fc978f6d8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc978f6d940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc978f6d9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc978f6da60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc978f6daf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc978f6db80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc978f62e40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670858159547117113, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqAEz2BAZW8EnDXvF7GSD0svbS9Lm0WPAAAgD8AAIA/zYh6vIPYQrzvJ7M78s2oPBV4pr2aYIk9AACAPwAAgD9D72u+b3tNPzigOT7MCh2/E/7TvvvJoT4AAAAAAAAAAOYpKT3h+M26+VrMve02iTzWEHu81odtPQAAgD8AAAAAzdaYPParazt5ZwU9q3dwvq4paT37XdW+AAAAAAAAgD9muSA9yRkEPnh6d71SEdG+pa8APd2GejkAAAAAAAAAAGYJzTwplDe6ckF7vHM1qTTTgik7zDwptAAAAAAAAAAAgGoAPh81zzwmiJC+XXuPvuwz8TzrFdC9AAAAAAAAAACaq3Y89owruhGQHL2GkR02WTCKu2Tij7UAAIA/AAAAAO3GMD5xZcw90jZ9vjObyr5qSy49kraDvQAAAAAAAAAATdWRvoNjhD8pijc92Z/9vvRM+b5eFDM+AAAAAAAAAAAAcu28HwX1ucrMgzlzH9Y0euHqO9iinLgAAIA/AAAAAOD8lj7YvTc/sQEavabJC79qNoQ+IyZ9vQAAAAAAAAAA2tXQPQlKMT0qtVC+wJa3vs1rPz09wR29AAAAAAAAAACANTa9Qk34PibVrD07oyC/I8L3vQzhtj0AAAAAAAAAAI3AlD5BwJY/WhPaPkEbN79LI7o+3gbXPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImaCGb+GAckCUhpRSlIwBbJRLp4wBdJRHQLO5Syn1nNB1fZQoaAZoCWgPQwi862zIv4xzQJSGlFKUaBVLvWgWR0CzuV1jEvTPdX2UKGgGaAloD0MIyCQjZ2GXcUCUhpRSlGgVS51oFkdAs7l4BFNL13V9lChoBmgJaA9DCGzOwTOh9nJAlIaUUpRoFUvfaBZHQLO5i3d9Dx91fZQoaAZoCWgPQwhj0t9LoQVyQJSGlFKUaBVLpWgWR0CzuY7P+n63dX2UKGgGaAloD0MIx/SEJV5kckCUhpRSlGgVS7loFkdAs7mh7pmmL3V9lChoBmgJaA9DCHpuoSvRkHFAlIaUUpRoFUujaBZHQLO5rORT0g91fZQoaAZoCWgPQwhB1ejVwH9xQJSGlFKUaBVL0mgWR0CzubHPZ7HAdX2UKGgGaAloD0MISN3OvnLvckCUhpRSlGgVS9ZoFkdAs7nNMQEpzHV9lChoBmgJaA9DCI1F09lJuHJAlIaUUpRoFUuvaBZHQLO54zTWoWJ1fZQoaAZoCWgPQwgaprbUwcNxQJSGlFKUaBVLxmgWR0Czue8XizcAdX2UKGgGaAloD0MIBwySPi3qckCUhpRSlGgVS8JoFkdAs7n369CeE3V9lChoBmgJaA9DCBnFckur3XNAlIaUUpRoFU0AAWgWR0CzuhzGYKIBdX2UKGgGaAloD0MIZr6Dn3jLckCUhpRSlGgVS+FoFkdAs7pRt2s7uHV9lChoBmgJaA9DCAXhCiiUYnBAlIaUUpRoFUvTaBZHQLO6YyCWeH11fZQoaAZoCWgPQwidZoF2BzNxQJSGlFKUaBVLxWgWR0CzumJ3PiT/dX2UKGgGaAloD0MIA0GADB2Cc0CUhpRSlGgVS9hoFkdAs7q1z8xbjnV9lChoBmgJaA9DCGRYxRuZ0XJAlIaUUpRoFUvfaBZHQLO6vT+NtIl1fZQoaAZoCWgPQwjDDmPSHxJzQJSGlFKUaBVLz2gWR0CzusB7mdRSdX2UKGgGaAloD0MIQx7BjVR+c0CUhpRSlGgVS81oFkdAs7rIN0/4ZnV9lChoBmgJaA9DCGgFhqyutXFAlIaUUpRoFUv1aBZHQLO6yDej2zx1fZQoaAZoCWgPQwiI9Uat8E1wQJSGlFKUaBVLp2gWR0CzuuSfg75mdX2UKGgGaAloD0MIQu4iTNFuc0CUhpRSlGgVS/RoFkdAs7sDADaGpXV9lChoBmgJaA9DCBU5RNwcGHNAlIaUUpRoFUviaBZHQLO7COXE61d1fZQoaAZoCWgPQwhMpgpGZZVwQJSGlFKUaBVLx2gWR0CzuzyEYfnwdX2UKGgGaAloD0MIxhnDnKBKcUCUhpRSlGgVS+5oFkdAs7tDUnXumnV9lChoBmgJaA9DCCEBo8sbpnJAlIaUUpRoFUvRaBZHQLO7g5ggHNZ1fZQoaAZoCWgPQwgZARWOYDFyQJSGlFKUaBVL1mgWR0Czu57CaZx8dX2UKGgGaAloD0MI9+Y3TDQHcUCUhpRSlGgVS6xoFkdAs7u11zQu3HV9lChoBmgJaA9DCDIdOj0viHNAlIaUUpRoFUvoaBZHQLO7vKB/Zuh1fZQoaAZoCWgPQwj11ysseGJxQJSGlFKUaBVLtGgWR0Czu8x8hLXddX2UKGgGaAloD0MIrfiGwqdacECUhpRSlGgVS7BoFkdAs7vOLFXJYHV9lChoBmgJaA9DCMr5Yu9FS3JAlIaUUpRoFUvAaBZHQLO72rKNhmZ1fZQoaAZoCWgPQwj04VmCzBBzQJSGlFKUaBVNXQFoFkdAs7veBtk4FXV9lChoBmgJaA9DCBy3mJ8buXFAlIaUUpRoFUvEaBZHQLO76X8fmtB1fZQoaAZoCWgPQwikjo6rEeNxQJSGlFKUaBVLuGgWR0Czu/VCPZIydX2UKGgGaAloD0MI4EkLl5Vbc0CUhpRSlGgVS79oFkdAs7wjLns9jnV9lChoBmgJaA9DCCI3ww14tXJAlIaUUpRoFUvHaBZHQLO8KQT238Z1fZQoaAZoCWgPQwiqSIWxxXxyQJSGlFKUaBVL32gWR0CzvIZqh11XdX2UKGgGaAloD0MIkE5d+SxXc0CUhpRSlGgVS+doFkdAs7yaGJvYOHV9lChoBmgJaA9DCEX11sAWx3BAlIaUUpRoFUvFaBZHQLO8qf9P1th1fZQoaAZoCWgPQwiQ14NJ8aFwQJSGlFKUaBVLuGgWR0CzvMZzT4L1dX2UKGgGaAloD0MIP4wQHi0VcUCUhpRSlGgVS6poFkdAs7zJUgjhUHV9lChoBmgJaA9DCKvnpPcNXXFAlIaUUpRoFUuxaBZHQLO84T9bX6J1fZQoaAZoCWgPQwjXT/9Z83BwQJSGlFKUaBVLqGgWR0CzvOTR2KVIdX2UKGgGaAloD0MIeO3ShgPDcECUhpRSlGgVS7JoFkdAs7zmeTV2BHV9lChoBmgJaA9DCIJy274Hh3JAlIaUUpRoFUvfaBZHQLO87AZsKsx1fZQoaAZoCWgPQwjuQ95y9VR0QJSGlFKUaBVL1mgWR0CzvPlAZ88cdX2UKGgGaAloD0MI8DUExyWqcECUhpRSlGgVS7loFkdAs70KHLzPKXV9lChoBmgJaA9DCA1VMZX+MnJAlIaUUpRoFUvYaBZHQLO9C052hZh1fZQoaAZoCWgPQwg5miMrv2pmQJSGlFKUaBVN6ANoFkdAs70o2Q4jr3V9lChoBmgJaA9DCI+lD13QHnNAlIaUUpRoFUvPaBZHQLO9VU96kZd1fZQoaAZoCWgPQwjfbkkOWMtyQJSGlFKUaBVL5WgWR0CzvW0LDye7dX2UKGgGaAloD0MIwXCuYQayb0CUhpRSlGgVS6poFkdAs72JOKwY+HV9lChoBmgJaA9DCAk2rn8Xo3NAlIaUUpRoFUvNaBZHQLO9qjUd7v51fZQoaAZoCWgPQwimme51UlFxQJSGlFKUaBVLwGgWR0Czvbdz4k/sdX2UKGgGaAloD0MIgsr49xkkcUCUhpRSlGgVS51oFkdAs729kK/mDHV9lChoBmgJaA9DCIT1fw4z3HBAlIaUUpRoFUusaBZHQLO914oZydZ1fZQoaAZoCWgPQwhnKy/5n6JyQJSGlFKUaBVLvmgWR0CzveamKqGUdX2UKGgGaAloD0MIwlHy6lweckCUhpRSlGgVS9NoFkdAs73sXyiEhHV9lChoBmgJaA9DCDhMNEgBiHFAlIaUUpRoFUvWaBZHQLO98telbeN1fZQoaAZoCWgPQwiBP/z8t1RxQJSGlFKUaBVLr2gWR0CzvflIVdondX2UKGgGaAloD0MIhxQDJFpccUCUhpRSlGgVS71oFkdAs74Ky2QXAXV9lChoBmgJaA9DCDAS2nIuNHNAlIaUUpRoFUusaBZHQLO+ElvqC6J1fZQoaAZoCWgPQwgNVMa/T05yQJSGlFKUaBVL32gWR0CzvhQbZOBUdX2UKGgGaAloD0MIr0Ffejs9ckCUhpRSlGgVS+RoFkdAs74rQXyiEnV9lChoBmgJaA9DCKiOVUpPxWJAlIaUUpRoFU3oA2gWR0CzvjmPtD2KdX2UKGgGaAloD0MI5xn7ks1jckCUhpRSlGgVS7toFkdAs75jxVhkRXV9lChoBmgJaA9DCI7LuKkBIXNAlIaUUpRoFUvUaBZHQLO+bEgntv51fZQoaAZoCWgPQwg2yCQj5yByQJSGlFKUaBVLl2gWR0CzvnqhUR4AdX2UKGgGaAloD0MITpoGRbM/cECUhpRSlGgVS7xoFkdAs758SeyzHHV9lChoBmgJaA9DCLa93ZLcAXJAlIaUUpRoFUvAaBZHQLO+mwztTk11fZQoaAZoCWgPQwiDwTV3NKZxQJSGlFKUaBVLvmgWR0CzvqOCkGiYdX2UKGgGaAloD0MIAHDs2TPPcECUhpRSlGgVS7VoFkdAs76/ggow23V9lChoBmgJaA9DCCdNg6L5ZHFAlIaUUpRoFUuzaBZHQLO+whYNiH91fZQoaAZoCWgPQwgKSWb1TkNwQJSGlFKUaBVLrmgWR0CzvsIMvyskdX2UKGgGaAloD0MIeZEJ+DW6b0CUhpRSlGgVS6toFkdAs77FdWyTp3V9lChoBmgJaA9DCOViDKyjOnFAlIaUUpRoFUuhaBZHQLO+004iosJ1fZQoaAZoCWgPQwjH1F3Zxb9zQJSGlFKUaBVLwGgWR0Czvu7sOXmedX2UKGgGaAloD0MIpZ4FofxickCUhpRSlGgVS79oFkdAs771LvkRz3V9lChoBmgJaA9DCOauJeSDpXFAlIaUUpRoFUulaBZHQLO+/Je3QUp1fZQoaAZoCWgPQwhd3hyu1e4+QJSGlFKUaBVLhWgWR0CzvwEETxoadX2UKGgGaAloD0MIC5bqAh7KcECUhpRSlGgVS7doFkdAs78EDeTFEXV9lChoBmgJaA9DCJq1FJC2iXFAlIaUUpRoFU0UAWgWR0CzvyCwB5oodX2UKGgGaAloD0MIvYxiueVCcUCUhpRSlGgVS7NoFkdAs787Tz/ZNHV9lChoBmgJaA9DCBFtx9Sdo3FAlIaUUpRoFUuyaBZHQLO/SObiIcl1fZQoaAZoCWgPQwhaK9ocp9NxQJSGlFKUaBVLjGgWR0Czv2Q9ic5KdX2UKGgGaAloD0MIu9OdJ55ncUCUhpRSlGgVS81oFkdAs79rKGL1mXV9lChoBmgJaA9DCM9nQL0ZJ3FAlIaUUpRoFUuiaBZHQLO/gAkLQX11fZQoaAZoCWgPQwjOjH40HMBxQJSGlFKUaBVL0mgWR0Czv5vE4vOAdX2UKGgGaAloD0MI8P0N2uv3ckCUhpRSlGgVS99oFkdAs7+iYplSTHV9lChoBmgJaA9DCBhA+FBi/XFAlIaUUpRoFUuZaBZHQLO/o1hb4ah1fZQoaAZoCWgPQwgP8KSFy+VxQJSGlFKUaBVLvmgWR0Czv6VTvRZ2dX2UKGgGaAloD0MIMLq8Odxlb0CUhpRSlGgVS6doFkdAs7++32EkB3V9lChoBmgJaA9DCOoENBF2P3FAlIaUUpRoFUu6aBZHQLO/z+so2GZ1fZQoaAZoCWgPQwj04O6sXYlyQJSGlFKUaBVL2mgWR0Czv9Re5WildX2UKGgGaAloD0MIFYvfFJZ6cECUhpRSlGgVS7xoFkdAs7/fHJcPfHV9lChoBmgJaA9DCOQxA5XxCHRAlIaUUpRoFUvyaBZHQLO/3vdM0xd1fZQoaAZoCWgPQwj/lCpRNqlxQJSGlFKUaBVLu2gWR0Czv+E/GEPEdX2UKGgGaAloD0MIkgN2Nfk1b0CUhpRSlGgVS65oFkdAs7/vqTr3TXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-params-lunarlander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f422d7fccdf89d9801f383e7f9abd4a3b37351178520f5e91d56f8c60e730284
3
+ size 147095
ppo-params-lunarlander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-params-lunarlander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc978f6d5e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc978f6d670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc978f6d700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc978f6d790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc978f6d820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc978f6d8b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc978f6d940>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc978f6d9d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc978f6da60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc978f6daf0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc978f6db80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fc978f62e40>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 2031616,
46
+ "_total_timesteps": 2000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670858159547117113,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqAEz2BAZW8EnDXvF7GSD0svbS9Lm0WPAAAgD8AAIA/zYh6vIPYQrzvJ7M78s2oPBV4pr2aYIk9AACAPwAAgD9D72u+b3tNPzigOT7MCh2/E/7TvvvJoT4AAAAAAAAAAOYpKT3h+M26+VrMve02iTzWEHu81odtPQAAgD8AAAAAzdaYPParazt5ZwU9q3dwvq4paT37XdW+AAAAAAAAgD9muSA9yRkEPnh6d71SEdG+pa8APd2GejkAAAAAAAAAAGYJzTwplDe6ckF7vHM1qTTTgik7zDwptAAAAAAAAAAAgGoAPh81zzwmiJC+XXuPvuwz8TzrFdC9AAAAAAAAAACaq3Y89owruhGQHL2GkR02WTCKu2Tij7UAAIA/AAAAAO3GMD5xZcw90jZ9vjObyr5qSy49kraDvQAAAAAAAAAATdWRvoNjhD8pijc92Z/9vvRM+b5eFDM+AAAAAAAAAAAAcu28HwX1ucrMgzlzH9Y0euHqO9iinLgAAIA/AAAAAOD8lj7YvTc/sQEavabJC79qNoQ+IyZ9vQAAAAAAAAAA2tXQPQlKMT0qtVC+wJa3vs1rPz09wR29AAAAAAAAAACANTa9Qk34PibVrD07oyC/I8L3vQzhtj0AAAAAAAAAAI3AlD5BwJY/WhPaPkEbN79LI7o+3gbXPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImaCGb+GAckCUhpRSlIwBbJRLp4wBdJRHQLO5Syn1nNB1fZQoaAZoCWgPQwi862zIv4xzQJSGlFKUaBVLvWgWR0CzuV1jEvTPdX2UKGgGaAloD0MIyCQjZ2GXcUCUhpRSlGgVS51oFkdAs7l4BFNL13V9lChoBmgJaA9DCGzOwTOh9nJAlIaUUpRoFUvfaBZHQLO5i3d9Dx91fZQoaAZoCWgPQwhj0t9LoQVyQJSGlFKUaBVLpWgWR0CzuY7P+n63dX2UKGgGaAloD0MIx/SEJV5kckCUhpRSlGgVS7loFkdAs7mh7pmmL3V9lChoBmgJaA9DCHpuoSvRkHFAlIaUUpRoFUujaBZHQLO5rORT0g91fZQoaAZoCWgPQwhB1ejVwH9xQJSGlFKUaBVL0mgWR0CzubHPZ7HAdX2UKGgGaAloD0MISN3OvnLvckCUhpRSlGgVS9ZoFkdAs7nNMQEpzHV9lChoBmgJaA9DCI1F09lJuHJAlIaUUpRoFUuvaBZHQLO54zTWoWJ1fZQoaAZoCWgPQwgaprbUwcNxQJSGlFKUaBVLxmgWR0Czue8XizcAdX2UKGgGaAloD0MIBwySPi3qckCUhpRSlGgVS8JoFkdAs7n369CeE3V9lChoBmgJaA9DCBnFckur3XNAlIaUUpRoFU0AAWgWR0CzuhzGYKIBdX2UKGgGaAloD0MIZr6Dn3jLckCUhpRSlGgVS+FoFkdAs7pRt2s7uHV9lChoBmgJaA9DCAXhCiiUYnBAlIaUUpRoFUvTaBZHQLO6YyCWeH11fZQoaAZoCWgPQwidZoF2BzNxQJSGlFKUaBVLxWgWR0CzumJ3PiT/dX2UKGgGaAloD0MIA0GADB2Cc0CUhpRSlGgVS9hoFkdAs7q1z8xbjnV9lChoBmgJaA9DCGRYxRuZ0XJAlIaUUpRoFUvfaBZHQLO6vT+NtIl1fZQoaAZoCWgPQwjDDmPSHxJzQJSGlFKUaBVLz2gWR0CzusB7mdRSdX2UKGgGaAloD0MIQx7BjVR+c0CUhpRSlGgVS81oFkdAs7rIN0/4ZnV9lChoBmgJaA9DCGgFhqyutXFAlIaUUpRoFUv1aBZHQLO6yDej2zx1fZQoaAZoCWgPQwiI9Uat8E1wQJSGlFKUaBVLp2gWR0CzuuSfg75mdX2UKGgGaAloD0MIQu4iTNFuc0CUhpRSlGgVS/RoFkdAs7sDADaGpXV9lChoBmgJaA9DCBU5RNwcGHNAlIaUUpRoFUviaBZHQLO7COXE61d1fZQoaAZoCWgPQwhMpgpGZZVwQJSGlFKUaBVLx2gWR0CzuzyEYfnwdX2UKGgGaAloD0MIxhnDnKBKcUCUhpRSlGgVS+5oFkdAs7tDUnXumnV9lChoBmgJaA9DCCEBo8sbpnJAlIaUUpRoFUvRaBZHQLO7g5ggHNZ1fZQoaAZoCWgPQwgZARWOYDFyQJSGlFKUaBVL1mgWR0Czu57CaZx8dX2UKGgGaAloD0MI9+Y3TDQHcUCUhpRSlGgVS6xoFkdAs7u11zQu3HV9lChoBmgJaA9DCDIdOj0viHNAlIaUUpRoFUvoaBZHQLO7vKB/Zuh1fZQoaAZoCWgPQwj11ysseGJxQJSGlFKUaBVLtGgWR0Czu8x8hLXddX2UKGgGaAloD0MIrfiGwqdacECUhpRSlGgVS7BoFkdAs7vOLFXJYHV9lChoBmgJaA9DCMr5Yu9FS3JAlIaUUpRoFUvAaBZHQLO72rKNhmZ1fZQoaAZoCWgPQwj04VmCzBBzQJSGlFKUaBVNXQFoFkdAs7veBtk4FXV9lChoBmgJaA9DCBy3mJ8buXFAlIaUUpRoFUvEaBZHQLO76X8fmtB1fZQoaAZoCWgPQwikjo6rEeNxQJSGlFKUaBVLuGgWR0Czu/VCPZIydX2UKGgGaAloD0MI4EkLl5Vbc0CUhpRSlGgVS79oFkdAs7wjLns9jnV9lChoBmgJaA9DCCI3ww14tXJAlIaUUpRoFUvHaBZHQLO8KQT238Z1fZQoaAZoCWgPQwiqSIWxxXxyQJSGlFKUaBVL32gWR0CzvIZqh11XdX2UKGgGaAloD0MIkE5d+SxXc0CUhpRSlGgVS+doFkdAs7yaGJvYOHV9lChoBmgJaA9DCEX11sAWx3BAlIaUUpRoFUvFaBZHQLO8qf9P1th1fZQoaAZoCWgPQwiQ14NJ8aFwQJSGlFKUaBVLuGgWR0CzvMZzT4L1dX2UKGgGaAloD0MIP4wQHi0VcUCUhpRSlGgVS6poFkdAs7zJUgjhUHV9lChoBmgJaA9DCKvnpPcNXXFAlIaUUpRoFUuxaBZHQLO84T9bX6J1fZQoaAZoCWgPQwjXT/9Z83BwQJSGlFKUaBVLqGgWR0CzvOTR2KVIdX2UKGgGaAloD0MIeO3ShgPDcECUhpRSlGgVS7JoFkdAs7zmeTV2BHV9lChoBmgJaA9DCIJy274Hh3JAlIaUUpRoFUvfaBZHQLO87AZsKsx1fZQoaAZoCWgPQwjuQ95y9VR0QJSGlFKUaBVL1mgWR0CzvPlAZ88cdX2UKGgGaAloD0MI8DUExyWqcECUhpRSlGgVS7loFkdAs70KHLzPKXV9lChoBmgJaA9DCA1VMZX+MnJAlIaUUpRoFUvYaBZHQLO9C052hZh1fZQoaAZoCWgPQwg5miMrv2pmQJSGlFKUaBVN6ANoFkdAs70o2Q4jr3V9lChoBmgJaA9DCI+lD13QHnNAlIaUUpRoFUvPaBZHQLO9VU96kZd1fZQoaAZoCWgPQwjfbkkOWMtyQJSGlFKUaBVL5WgWR0CzvW0LDye7dX2UKGgGaAloD0MIwXCuYQayb0CUhpRSlGgVS6poFkdAs72JOKwY+HV9lChoBmgJaA9DCAk2rn8Xo3NAlIaUUpRoFUvNaBZHQLO9qjUd7v51fZQoaAZoCWgPQwimme51UlFxQJSGlFKUaBVLwGgWR0Czvbdz4k/sdX2UKGgGaAloD0MIgsr49xkkcUCUhpRSlGgVS51oFkdAs729kK/mDHV9lChoBmgJaA9DCIT1fw4z3HBAlIaUUpRoFUusaBZHQLO914oZydZ1fZQoaAZoCWgPQwhnKy/5n6JyQJSGlFKUaBVLvmgWR0CzveamKqGUdX2UKGgGaAloD0MIwlHy6lweckCUhpRSlGgVS9NoFkdAs73sXyiEhHV9lChoBmgJaA9DCDhMNEgBiHFAlIaUUpRoFUvWaBZHQLO98telbeN1fZQoaAZoCWgPQwiBP/z8t1RxQJSGlFKUaBVLr2gWR0CzvflIVdondX2UKGgGaAloD0MIhxQDJFpccUCUhpRSlGgVS71oFkdAs74Ky2QXAXV9lChoBmgJaA9DCDAS2nIuNHNAlIaUUpRoFUusaBZHQLO+ElvqC6J1fZQoaAZoCWgPQwgNVMa/T05yQJSGlFKUaBVL32gWR0CzvhQbZOBUdX2UKGgGaAloD0MIr0Ffejs9ckCUhpRSlGgVS+RoFkdAs74rQXyiEnV9lChoBmgJaA9DCKiOVUpPxWJAlIaUUpRoFU3oA2gWR0CzvjmPtD2KdX2UKGgGaAloD0MI5xn7ks1jckCUhpRSlGgVS7toFkdAs75jxVhkRXV9lChoBmgJaA9DCI7LuKkBIXNAlIaUUpRoFUvUaBZHQLO+bEgntv51fZQoaAZoCWgPQwg2yCQj5yByQJSGlFKUaBVLl2gWR0CzvnqhUR4AdX2UKGgGaAloD0MITpoGRbM/cECUhpRSlGgVS7xoFkdAs758SeyzHHV9lChoBmgJaA9DCLa93ZLcAXJAlIaUUpRoFUvAaBZHQLO+mwztTk11fZQoaAZoCWgPQwiDwTV3NKZxQJSGlFKUaBVLvmgWR0CzvqOCkGiYdX2UKGgGaAloD0MIAHDs2TPPcECUhpRSlGgVS7VoFkdAs76/ggow23V9lChoBmgJaA9DCCdNg6L5ZHFAlIaUUpRoFUuzaBZHQLO+whYNiH91fZQoaAZoCWgPQwgKSWb1TkNwQJSGlFKUaBVLrmgWR0CzvsIMvyskdX2UKGgGaAloD0MIeZEJ+DW6b0CUhpRSlGgVS6toFkdAs77FdWyTp3V9lChoBmgJaA9DCOViDKyjOnFAlIaUUpRoFUuhaBZHQLO+004iosJ1fZQoaAZoCWgPQwjH1F3Zxb9zQJSGlFKUaBVLwGgWR0Czvu7sOXmedX2UKGgGaAloD0MIpZ4FofxickCUhpRSlGgVS79oFkdAs771LvkRz3V9lChoBmgJaA9DCOauJeSDpXFAlIaUUpRoFUulaBZHQLO+/Je3QUp1fZQoaAZoCWgPQwhd3hyu1e4+QJSGlFKUaBVLhWgWR0CzvwEETxoadX2UKGgGaAloD0MIC5bqAh7KcECUhpRSlGgVS7doFkdAs78EDeTFEXV9lChoBmgJaA9DCJq1FJC2iXFAlIaUUpRoFU0UAWgWR0CzvyCwB5oodX2UKGgGaAloD0MIvYxiueVCcUCUhpRSlGgVS7NoFkdAs787Tz/ZNHV9lChoBmgJaA9DCBFtx9Sdo3FAlIaUUpRoFUuyaBZHQLO/SObiIcl1fZQoaAZoCWgPQwhaK9ocp9NxQJSGlFKUaBVLjGgWR0Czv2Q9ic5KdX2UKGgGaAloD0MIu9OdJ55ncUCUhpRSlGgVS81oFkdAs79rKGL1mXV9lChoBmgJaA9DCM9nQL0ZJ3FAlIaUUpRoFUuiaBZHQLO/gAkLQX11fZQoaAZoCWgPQwjOjH40HMBxQJSGlFKUaBVL0mgWR0Czv5vE4vOAdX2UKGgGaAloD0MI8P0N2uv3ckCUhpRSlGgVS99oFkdAs7+iYplSTHV9lChoBmgJaA9DCBhA+FBi/XFAlIaUUpRoFUuZaBZHQLO/o1hb4ah1fZQoaAZoCWgPQwgP8KSFy+VxQJSGlFKUaBVLvmgWR0Czv6VTvRZ2dX2UKGgGaAloD0MIMLq8Odxlb0CUhpRSlGgVS6doFkdAs7++32EkB3V9lChoBmgJaA9DCOoENBF2P3FAlIaUUpRoFUu6aBZHQLO/z+so2GZ1fZQoaAZoCWgPQwj04O6sXYlyQJSGlFKUaBVL2mgWR0Czv9Re5WildX2UKGgGaAloD0MIFYvfFJZ6cECUhpRSlGgVS7xoFkdAs7/fHJcPfHV9lChoBmgJaA9DCOQxA5XxCHRAlIaUUpRoFUvyaBZHQLO/3vdM0xd1fZQoaAZoCWgPQwj/lCpRNqlxQJSGlFKUaBVLu2gWR0Czv+E/GEPEdX2UKGgGaAloD0MIkgN2Nfk1b0CUhpRSlGgVS65oFkdAs7/vqTr3TXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 620,
79
+ "n_steps": 2048,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-params-lunarlander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65aab049798e3589ff06602f3226ad2a2176ce6da4459039c7260acb84fb138f
3
+ size 87929
ppo-params-lunarlander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a29e784e57c0d50017f56871719c955ab3ed57734b5379d9c4ba6deb45a811e8
3
+ size 43201
ppo-params-lunarlander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-params-lunarlander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 254.25117525090474, "std_reward": 26.508652876399154, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-12T15:06:46.636228"}
 
1
+ {"mean_reward": 287.60335550096477, "std_reward": 14.463206299514336, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-12T15:59:15.398628"}