File size: 5,672 Bytes
3e57ff7 5ffaba9 3e57ff7 5ffaba9 f2a9f5c 5ffaba9 f2a9f5c 5ffaba9 f2a9f5c 5ffaba9 f2a9f5c 5ffaba9 f2a9f5c 5ffaba9 f2a9f5c 5ffaba9 f2a9f5c 3e57ff7 76ed64a 3e57ff7 7576d3a ce5b38c 3e57ff7 9cde966 3e57ff7 8d0ac8a 850ff44 f2a9f5c 850ff44 f2a9f5c 850ff44 f2a9f5c 850ff44 f2a9f5c 850ff44 f2a9f5c 850ff44 f2a9f5c b2f2f15 850ff44 8d0ac8a 9cde966 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
---
language:
- en
license: mit
tags:
- chatml
- mistral
- instruct
- openhermes
- economics
datasets:
- rxavier/economicus
base_model: teknium/OpenHermes-2.5-Mistral-7B
model-index:
- name: Taurus-7B-1.0
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 63.57
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.64
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.5
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 50.21
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.14
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 59.36
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
name: Open LLM Leaderboard
library_name: transformers
---
# Taurus 7B 1.0
![image/png](https://i.ibb.co/dGZ50jy/00003-4001299986.png)
## Description
Taurus is an [OpenHermes 2.5](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) finetune using the [Economicus dataset](https://huggingface.co/datasets/rxavier/economicus), an instruct dataset synthetically generated from Economics PhD textbooks.
The model was trained for 2 epochs (QLoRA) using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). The exact config I used can be found [here](https://huggingface.co/rxavier/Taurus-1.0-Mistral-7B/tree/main/axolotl).
## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_rxavier__Taurus-7B-1.0)
| Metric |Value|
|---------------------------------|----:|
|Avg. |66.40|
|AI2 Reasoning Challenge (25-Shot)|63.57|
|HellaSwag (10-Shot) |83.64|
|MMLU (5-Shot) |63.50|
|TruthfulQA (0-shot) |50.21|
|Winogrande (5-shot) |78.14|
|GSM8k (5-shot) |59.36|
## Prompt format
Taurus uses **ChatML**.
```
<|im_start|>system
System message
<|im_start|>user
User message<|im_end|>
<|im_start|>assistant
```
## Usage
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
model_id = "rxavier/Taurus-7B-1.0"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16, #torch.float16 for older GPUs
device_map="auto", # Requires having accelerate installed, useful in places like Colab with limited VRAM
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
generation_config = GenerationConfig(
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
system_message = "You are an expert in economics with PhD level knowledge. You are helpful, give thorough and clear explanations, and use equations and formulas where needed."
prompt = "Give me latex formulas for extended euler equations"
messages = [{"role": "system",
"content": system_message},
{"role": "user",
"content": prompt}]
tokens = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model.generate(inputs=tokens, generation_config=generation_config, max_length=512)
print(tokenizer.decode(outputs.cpu().tolist()[0]))
```
## GGUF quants
You can find GGUF quants for llama.cpp [here](https://huggingface.co/rxavier/Taurus-7B-1.0-GGUF). |