File size: 5,672 Bytes
3e57ff7
 
 
5ffaba9
3e57ff7
 
 
 
 
 
5ffaba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a9f5c
 
5ffaba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a9f5c
 
5ffaba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a9f5c
 
5ffaba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a9f5c
 
5ffaba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a9f5c
 
5ffaba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a9f5c
 
5ffaba9
f2a9f5c
3e57ff7
 
76ed64a
3e57ff7
7576d3a
ce5b38c
3e57ff7
 
 
 
 
 
9cde966
 
 
 
 
 
 
 
 
 
 
 
 
3e57ff7
 
 
 
 
 
 
 
 
 
8d0ac8a
 
850ff44
 
 
 
f2a9f5c
850ff44
 
 
 
f2a9f5c
 
 
850ff44
f2a9f5c
850ff44
f2a9f5c
 
 
850ff44
 
 
f2a9f5c
850ff44
 
 
 
 
 
 
 
f2a9f5c
b2f2f15
850ff44
 
8d0ac8a
 
9cde966
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
language:
- en
license: mit
tags:
- chatml
- mistral
- instruct
- openhermes
- economics
datasets:
- rxavier/economicus
base_model: teknium/OpenHermes-2.5-Mistral-7B
model-index:
- name: Taurus-7B-1.0
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 63.57
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.64
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.5
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 50.21
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.14
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 59.36
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
      name: Open LLM Leaderboard
library_name: transformers
---

# Taurus 7B 1.0

![image/png](https://i.ibb.co/dGZ50jy/00003-4001299986.png)

## Description

Taurus is an [OpenHermes 2.5](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) finetune using the [Economicus dataset](https://huggingface.co/datasets/rxavier/economicus), an instruct dataset synthetically generated from Economics PhD textbooks.

The model was trained for 2 epochs (QLoRA) using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). The exact config I used can be found [here](https://huggingface.co/rxavier/Taurus-1.0-Mistral-7B/tree/main/axolotl).

## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_rxavier__Taurus-7B-1.0)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |66.40|
|AI2 Reasoning Challenge (25-Shot)|63.57|
|HellaSwag (10-Shot)              |83.64|
|MMLU (5-Shot)                    |63.50|
|TruthfulQA (0-shot)              |50.21|
|Winogrande (5-shot)              |78.14|
|GSM8k (5-shot)                   |59.36|

## Prompt format

Taurus uses **ChatML**.

```
<|im_start|>system
System message
<|im_start|>user
User message<|im_end|>
<|im_start|>assistant
```

## Usage

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig


model_id = "rxavier/Taurus-7B-1.0"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16, #torch.float16 for older GPUs
    device_map="auto", # Requires having accelerate installed, useful in places like Colab with limited VRAM
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
generation_config = GenerationConfig(
                bos_token_id=tokenizer.bos_token_id,
                eos_token_id=tokenizer.eos_token_id,
                pad_token_id=tokenizer.pad_token_id,
            )

system_message = "You are an expert in economics with PhD level knowledge. You are helpful, give thorough and clear explanations, and use equations and formulas where needed."
prompt = "Give me latex formulas for extended euler equations"

messages = [{"role": "system",
             "content": system_message},
            {"role": "user",
             "content": prompt}]
tokens = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")

with torch.no_grad():
    outputs = model.generate(inputs=tokens, generation_config=generation_config, max_length=512)
print(tokenizer.decode(outputs.cpu().tolist()[0]))
```

## GGUF quants

You can find GGUF quants for llama.cpp [here](https://huggingface.co/rxavier/Taurus-7B-1.0-GGUF).