PPO-LunarLander-v2 / config.json
ryanblak's picture
Upload PPO LunarLander-v2 trained agent
84332f2
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8f2a29f710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8f2a29f7a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8f2a29f830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8f2a29f8c0>", "_build": "<function ActorCriticPolicy._build at 0x7f8f2a29f950>", "forward": "<function ActorCriticPolicy.forward at 0x7f8f2a29f9e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8f2a29fa70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8f2a29fb00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8f2a29fb90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8f2a29fc20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8f2a29fcb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8f2a2f32a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656255869.7519116, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzY/lPPavGrxGOYa9paBgvFO3fj1uHDs9AACAPwAAgD/Nnug8785gP3JFlDrZbfa+vhpFvGvx8z0AAAAAAAAAAGYNizy/6zs/EV6ytwc42L6hhCg8ORkuPQAAAAAAAAAAMw2dvJZutT++rVC+Wi6YvX4FrjtDE+O8AAAAAAAAAABmZkW7apazP7I7a72vf/y9mqeGu7IlyLwAAAAAAAAAAADg/bsU1uW6CPL+vCSMIb1ty3w7/FUNPgAAgD8AAAAAelAIvumA4j7N2IU+ZBS3vrhl1jyQAvS6AAAAAAAAAABmGrO8wPjwPjZIsz13YNC+N6OpPfhLKj0AAAAAAAAAAGZuJjzBHQg+xrRMvrlpnL7ZlO29+jngPQAAAAAAAAAAM+DIPIeBYT8uFoE9jBzivlE6AT0ifiY9AAAAAAAAAAAav+49dVB2PjLEHb6z1He+UGgWvOq/1bsAAAAAAAAAAJrxvTx7HL0/8A0SPhS4Gj26Hp27qJqxPQAAAAAAAAAAMKGSPjKakz/WEI4+jtcWvz+cCD9IZN29AAAAAAAAAABNu6I9+V0zP+7CWT3W8ba+vYxmPf9Soj0AAAAAAAAAAAAlmD1cbkU/x1hAPS5X2771/5E9W5h4vQAAAAAAAAAATVMsPugytD9z8/s+cxncvi2joj7lcWI+AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVPRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItHOaBdrvUkCUhpRSlIwBbJRLzYwBdJRHQK3MHX6qKgt1fZQoaAZoCWgPQwjCw7Rv7gZwQJSGlFKUaBVL5WgWR0CtzNS0Sh8IdX2UKGgGaAloD0MI1SR4Q1oMc0CUhpRSlGgVS/BoFkdArczYsqaw2XV9lChoBmgJaA9DCHglyXN9809AlIaUUpRoFUuSaBZHQK3M5W2gFot1fZQoaAZoCWgPQwioUx7diOtvQJSGlFKUaBVL7mgWR0CtzOxwAEMcdX2UKGgGaAloD0MIKNL9nMKccECUhpRSlGgVTRIBaBZHQK3NNM1TBIp1fZQoaAZoCWgPQwhIqYQndGFyQJSGlFKUaBVL/GgWR0CtzaBqsU7CdX2UKGgGaAloD0MIR3GOOnpRcECUhpRSlGgVS+JoFkdArc248p1A7nV9lChoBmgJaA9DCItSQrBq3nFAlIaUUpRoFUv3aBZHQK3NzIAfdRB1fZQoaAZoCWgPQwj+RdCYydttQJSGlFKUaBVNBgFoFkdArc3fFYMfBHV9lChoBmgJaA9DCAmKH2NuBHFAlIaUUpRoFUvyaBZHQK3N5IQOFxp1fZQoaAZoCWgPQwgLmpZYmWBzQJSGlFKUaBVL3mgWR0Ctzen446wMdX2UKGgGaAloD0MIr5l8s81bcUCUhpRSlGgVTQsBaBZHQK3OBbrTpgV1fZQoaAZoCWgPQwi3uMZnshxQQJSGlFKUaBVLmWgWR0CtzhD2rXDndX2UKGgGaAloD0MI6GfqdcsPc0CUhpRSlGgVS/NoFkdArc5fGp++d3V9lChoBmgJaA9DCGo0uRiDJW1AlIaUUpRoFU0CAWgWR0CtzpTAnDzidX2UKGgGaAloD0MI8L4qFyogbkCUhpRSlGgVS91oFkdArc6lMdtEX3V9lChoBmgJaA9DCFW/0vnwhnBAlIaUUpRoFUvbaBZHQK3PYd8Rcu91fZQoaAZoCWgPQwj1ZtR8lZhxQJSGlFKUaBVL72gWR0Ctz6R+BpYcdX2UKGgGaAloD0MIYW73ct/5cECUhpRSlGgVS/hoFkdArc/ZikO7QXV9lChoBmgJaA9DCO4jtyYdsnBAlIaUUpRoFUvcaBZHQK3QOjh1klN1fZQoaAZoCWgPQwhmwcQfBR1zQJSGlFKUaBVNHAFoFkdArdBTFn7HhnV9lChoBmgJaA9DCF6c+GqH03BAlIaUUpRoFUveaBZHQK3QgSU1Q691fZQoaAZoCWgPQwiXrfVFwlRxQJSGlFKUaBVNEgFoFkdArdCEgdOqN3V9lChoBmgJaA9DCDQTDOdaE3JAlIaUUpRoFUvjaBZHQK3QlxTbWVh1fZQoaAZoCWgPQwglXTP5Zh9wQJSGlFKUaBVL9WgWR0Ct0KXFUADJdX2UKGgGaAloD0MIMGMK1ngncUCUhpRSlGgVS+BoFkdArdC1s1sLv3V9lChoBmgJaA9DCIf8M4P4p3BAlIaUUpRoFUv3aBZHQK3QvuJk5IZ1fZQoaAZoCWgPQwjqdvaVh4NuQJSGlFKUaBVNEAFoFkdArdEaItUXHnV9lChoBmgJaA9DCOtXOh/eQHJAlIaUUpRoFUvmaBZHQK3RJAoG6f91fZQoaAZoCWgPQwidZRahmDNzQJSGlFKUaBVL2mgWR0Ct0UfMfRu1dX2UKGgGaAloD0MIFRqIZfMScUCUhpRSlGgVS/JoFkdArdF6BkI5YHV9lChoBmgJaA9DCLg6AOIugnNAlIaUUpRoFU1LAWgWR0Ct2vYGMXJpdX2UKGgGaAloD0MIdonqrYF/UUCUhpRSlGgVS7loFkdArdsTnzQNTnV9lChoBmgJaA9DCJoJhnPN/HFAlIaUUpRoFUv9aBZHQK3bvm/WUbF1fZQoaAZoCWgPQwidE3toH3NxQJSGlFKUaBVNFQFoFkdArdvQWznienV9lChoBmgJaA9DCA5N2ekHA3NAlIaUUpRoFUvVaBZHQK3cN+uNgjR1fZQoaAZoCWgPQwjJsIo3MiVvQJSGlFKUaBVL7mgWR0Ct3Dg2606YdX2UKGgGaAloD0MI4bVLG05acUCUhpRSlGgVS/doFkdArdw/rnkkr3V9lChoBmgJaA9DCCIAOPZsiHJAlIaUUpRoFUvVaBZHQK3cRvPTodN1fZQoaAZoCWgPQwhKC5dV2O5yQJSGlFKUaBVL92gWR0Ct3H1dX1aodX2UKGgGaAloD0MITYI3pJGDckCUhpRSlGgVS/RoFkdArdyt38n/k3V9lChoBmgJaA9DCBvZlZYR/m9AlIaUUpRoFU0TAWgWR0Ct3OoCuEEldX2UKGgGaAloD0MIKLhYUYNGb0CUhpRSlGgVTRoBaBZHQK3c7cfNiYt1fZQoaAZoCWgPQwia7Qp9sBNxQJSGlFKUaBVL5WgWR0Ct3O2Pkq+bdX2UKGgGaAloD0MI8dWO4hyQc0CUhpRSlGgVS+FoFkdArdztGb1AaHV9lChoBmgJaA9DCHE486t5MnJAlIaUUpRoFUvjaBZHQK3dEfFrEcd1fZQoaAZoCWgPQwjtnjws1HFtQJSGlFKUaBVL42gWR0Ct3T5dWyTqdX2UKGgGaAloD0MIZXH/kamHckCUhpRSlGgVS95oFkdArd2UkSmIkHV9lChoBmgJaA9DCIdREDw+bG1AlIaUUpRoFU0JAWgWR0Ct3jE0BOpLdX2UKGgGaAloD0MI1PNuLCgXc0CUhpRSlGgVS+5oFkdArd6UOuq3mXV9lChoBmgJaA9DCEjhehSuj29AlIaUUpRoFU0IAWgWR0Ct3t8slLOBdX2UKGgGaAloD0MIU+i8xq4MbkCUhpRSlGgVTQYBaBZHQK3fcE4//vR1fZQoaAZoCWgPQwiwOJz5la9wQJSGlFKUaBVNDgFoFkdArd9/UlRgqnV9lChoBmgJaA9DCGppboWwv3FAlIaUUpRoFU0NAWgWR0Ct34PFFUhndX2UKGgGaAloD0MIYOemzfjWcECUhpRSlGgVS91oFkdArd+c7jkuH3V9lChoBmgJaA9DCIT0FDlEs25AlIaUUpRoFU0ZAWgWR0Ct36ZwwTM8dX2UKGgGaAloD0MIPPiJA+gZc0CUhpRSlGgVS+BoFkdArd+q8OCoTHV9lChoBmgJaA9DCFTkEHEzBXBAlIaUUpRoFU0HAWgWR0Ct37RZMcp9dX2UKGgGaAloD0MIdhcoKfBecUCUhpRSlGgVS/BoFkdArd/beTFERnV9lChoBmgJaA9DCL2nctoTzXBAlIaUUpRoFU0TAWgWR0Ct4ArftQbddX2UKGgGaAloD0MIorJhTaVgckCUhpRSlGgVS/poFkdAreAk6mwaBXV9lChoBmgJaA9DCKvpeqIrn3NAlIaUUpRoFUvKaBZHQK3gLtCzC1t1fZQoaAZoCWgPQwgKvJNPz+hwQJSGlFKUaBVNLQFoFkdAreCFVxS5y3V9lChoBmgJaA9DCA3iAzv+Z3FAlIaUUpRoFU0cAWgWR0Ct4LGxUvPDdX2UKGgGaAloD0MI+x9grVoIckCUhpRSlGgVS+RoFkdAreEHCj1wpHV9lChoBmgJaA9DCF6gpMCChHFAlIaUUpRoFUvhaBZHQK3hVDzAeq91fZQoaAZoCWgPQwhUVWgglt5yQJSGlFKUaBVNCQFoFkdAreImFDfFaXV9lChoBmgJaA9DCG8RGOtbLHJAlIaUUpRoFUvpaBZHQK3iafJ3gUF1fZQoaAZoCWgPQwgPJzCd1pFNQJSGlFKUaBVLwGgWR0Ct4ootL+PzdX2UKGgGaAloD0MIVWggls1Eb0CUhpRSlGgVS+1oFkdAreKW6RQrMHV9lChoBmgJaA9DCGXEBaDR0nFAlIaUUpRoFU0CAWgWR0Ct4qx9gF5fdX2UKGgGaAloD0MIdZDXg0lmb0CUhpRSlGgVTQwBaBZHQK3iw1IiC8R1fZQoaAZoCWgPQwh0XfjB+bNwQJSGlFKUaBVNAAFoFkdAreLMyi22HHV9lChoBmgJaA9DCAlvD0JAI3JAlIaUUpRoFUvjaBZHQK3i2fpUxVR1fZQoaAZoCWgPQwgZcQFo1G1yQJSGlFKUaBVNBgFoFkdAreLk2gnMMnV9lChoBmgJaA9DCPAw7Zu7T3FAlIaUUpRoFU0VAWgWR0Ct4u8urZJ1dX2UKGgGaAloD0MIeh1xyIb8ckCUhpRSlGgVS95oFkdAreNHHHWBjHV9lChoBmgJaA9DCAnf+xv02HJAlIaUUpRoFU0fAWgWR0Ct41FSS/0vdX2UKGgGaAloD0MIamyvBb10cUCUhpRSlGgVTQ8BaBZHQK3jaufVZs91fZQoaAZoCWgPQwhUjsnivvBwQJSGlFKUaBVL8GgWR0Ct46Gj9GZvdX2UKGgGaAloD0MIAmGnWLUfcECUhpRSlGgVS/FoFkdAreP3mHP/rHV9lChoBmgJaA9DCNap8j1jUnJAlIaUUpRoFUvaaBZHQK3kAw9JSR91fZQoaAZoCWgPQwixijcyj/RSQJSGlFKUaBVLo2gWR0Ct5F38n/kvdX2UKGgGaAloD0MIn6pCA7EkRkCUhpRSlGgVS5VoFkdAreR0SPEKmnV9lChoBmgJaA9DCIYDIVlAmHFAlIaUUpRoFUvsaBZHQK3k5AO8TSN1fZQoaAZoCWgPQwhTILOzqJBzQJSGlFKUaBVL7mgWR0Ct5UCGN70GdX2UKGgGaAloD0MIhnDMsmfZckCUhpRSlGgVS/poFkdAreVOk8A7xXV9lChoBmgJaA9DCGe0VUmke3JAlIaUUpRoFUvtaBZHQK3lW5hjOLR1fZQoaAZoCWgPQwgllSnmIJ9uQJSGlFKUaBVL6mgWR0Ct5ZKWLP2PdX2UKGgGaAloD0MIH9lcNQ+OcUCUhpRSlGgVTQYBaBZHQK3l19Sde6Z1fZQoaAZoCWgPQwgiUWhZt8NxQJSGlFKUaBVL32gWR0Ct5dwK0D2bdX2UKGgGaAloD0MIB+5AnfJZckCUhpRSlGgVTRoBaBZHQK3mA+BYmsx1fZQoaAZoCWgPQwh4z4HliBdwQJSGlFKUaBVL6WgWR0Ct5gg8B+4LdX2UKGgGaAloD0MICfmgZzOMcECUhpRSlGgVS+ZoFkdAreYahnJ1aHV9lChoBmgJaA9DCDZYOEkzjXFAlIaUUpRoFU0qAWgWR0Ct5jg6Mir1dX2UKGgGaAloD0MIL9tOW+M7c0CUhpRSlGgVS/FoFkdAreZwSteUp3V9lChoBmgJaA9DCDbn4JlQXG5AlIaUUpRoFUvlaBZHQK3mpXDm8ul1fZQoaAZoCWgPQwgFajF4mOhMQJSGlFKUaBVLl2gWR0Ct5rPsRg7YdX2UKGgGaAloD0MIIVwBhXr3ckCUhpRSlGgVS+poFkdArea+c+aBqnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}