Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -27.77 +/- 26.11
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8f2a29f710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8f2a29f7a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8f2a29f830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8f2a29f8c0>", "_build": "<function ActorCriticPolicy._build at 0x7f8f2a29f950>", "forward": "<function ActorCriticPolicy.forward at 0x7f8f2a29f9e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8f2a29fa70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8f2a29fb00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8f2a29fb90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8f2a29fc20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8f2a29fcb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8f2a2f32a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656253598.0861568, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAMxeCu/aQY7r/c7w7xQ+ZOGKEhbtDz3G6AACAPwAAgD/40bG+SahQPU6SFz6LQxO+S/aOPVPgEj4AAAAAAAAAAPNnej42DHW8HzS/u4A6mDlUkty97s53OgAAgD8AAIA/ALk3vabGtz+e9Z2+7QxWvZpiwLwjpVy9AAAAAAAAAAAmYOm9Uujcuf7+qjqJrYq5dDsyu7NYvLkAAIA/AACAPxrkF72P3hC6qjm/vO5TJra+VFi7OpGYNQAAgD8AAIA/ynuMPkA9oj5sKBi9+fGOvo54cz1ZjoI9AAAAAAAAAADGcDU+YYOFO6ZAkzt0X+g48hMSPfgErboAAIA/AACAP1OeSj6F3vQ81qfivIvL87qGiYY+Mz9YvAAAgD8AAIA/9pSMvtpIoT9GxLK+KkfpvncaiL4hxUm9AAAAAAAAAADzwK09Wh+dPxog1zzxgXe+bBEAPtGhFr4AAAAAAAAAAGM5rj5JyR09xXqsvKFWQrpi7xY+4Hz3OwAAgD8AAIA/OqAfvpyzbj++qG48q+aFvqkEkrveioc9AAAAAAAAAABT0II+YwEMPTaKgjoC0G45ZC+ePr7X07kAAIA/AACAP80eND0fVcy5mtCcuxkLUDXHgLe7w3m+tAAAgD8AAIA/Dc7FPfZUEroiONa7LI1qtUNgyzkKus80AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMhzPZ0BHScCUhpRSlIwBbJRNBQGMAXSUR0CBpXKaoddWdX2UKGgGaAloD0MIBMjQsYNySUCUhpRSlGgVTegDaBZHQIGrwZbY9Pl1fZQoaAZoCWgPQwhCQ/8EF+lfQJSGlFKUaBVN6ANoFkdAgbGUWl/H53V9lChoBmgJaA9DCGSRJt4BLhXAlIaUUpRoFUvyaBZHQIG27A1vVEx1fZQoaAZoCWgPQwhFEOfhhL1iQJSGlFKUaBVN6ANoFkdAgbiupCKJmHV9lChoBmgJaA9DCJKWytsRDltAlIaUUpRoFU3oA2gWR0CBu1hJiAlOdX2UKGgGaAloD0MIJjrLLEIvZkCUhpRSlGgVTeIDaBZHQIG8+hZha1V1fZQoaAZoCWgPQwgyIeaSqgRhQJSGlFKUaBVN6ANoFkdAgb5Y/3WWhXV9lChoBmgJaA9DCJrN4zCYPylAlIaUUpRoFU0VAWgWR0CBv1XmNipedX2UKGgGaAloD0MIe5+qQgMhW0CUhpRSlGgVTegDaBZHQIHA6B5HEuR1fZQoaAZoCWgPQwgXoG01615JwJSGlFKUaBVLwmgWR0CBxp1HvttzdX2UKGgGaAloD0MIXHaIf9hxUkCUhpRSlGgVTegDaBZHQIHHU7r9l3B1fZQoaAZoCWgPQwjVWS2wxwQPwJSGlFKUaBVNBwFoFkdAgdDwhOgxrXV9lChoBmgJaA9DCGTKh6BquVZAlIaUUpRoFU3oA2gWR0CB01vv0AcUdX2UKGgGaAloD0MIdv9YiA77RsCUhpRSlGgVTSABaBZHQIHYeKqGUOd1fZQoaAZoCWgPQwgHDJI+LVRhQJSGlFKUaBVN6ANoFkdAgdkDQAuIynV9lChoBmgJaA9DCLX8wFWerEDAlIaUUpRoFUvNaBZHQIHaxujynUF1fZQoaAZoCWgPQwiR0QFJ2MZXQJSGlFKUaBVN6ANoFkdAgeLJSzgMt3V9lChoBmgJaA9DCIi6D0BqW2pAlIaUUpRoFU3CAWgWR0CCC+Ly+YdAdX2UKGgGaAloD0MI2GFM+vvlZECUhpRSlGgVTegDaBZHQIIXIEGJN0x1fZQoaAZoCWgPQwgEyxEykEFgQJSGlFKUaBVN6ANoFkdAgjTaY3Ns33V9lChoBmgJaA9DCHwpPGh2JltAlIaUUpRoFU3oA2gWR0CCRtGtITXbdX2UKGgGaAloD0MImrLTD+r2XUCUhpRSlGgVTegDaBZHQIJN2GATZg51fZQoaAZoCWgPQwiEYitoWnFcQJSGlFKUaBVN6ANoFkdAgmHBGYrrgXV9lChoBmgJaA9DCCieswWE3FFAlIaUUpRoFU3oA2gWR0CCaYQ9zOopdX2UKGgGaAloD0MImUhpNo8iVUCUhpRSlGgVTegDaBZHQIJrQzUI9kl1fZQoaAZoCWgPQwgfv7fpz+hYQJSGlFKUaBVN6ANoFkdAgm3A4ffXPXV9lChoBmgJaA9DCGK/J9YpBmlAlIaUUpRoFU0UAmgWR0CCcCbPQfITdX2UKGgGaAloD0MIVW03wTcHXkCUhpRSlGgVTegDaBZHQIJ3c7nxJ/Z1fZQoaAZoCWgPQwgjaTf6mNRZQJSGlFKUaBVN6ANoFkdAgoUsVk+X7nV9lChoBmgJaA9DCJD0aRX9PFZAlIaUUpRoFU3oA2gWR0CCiEm2LHdXdX2UKGgGaAloD0MIh97i4T2HAkCUhpRSlGgVTQUBaBZHQIKMmstCiRJ1fZQoaAZoCWgPQwgaidAINhteQJSGlFKUaBVN6ANoFkdAgo5T9S/CZXV9lChoBmgJaA9DCGhaYmU0jGFAlIaUUpRoFU3oA2gWR0CCjt2ovSMMdX2UKGgGaAloD0MIpyIVxhY6S0CUhpRSlGgVTegDaBZHQIKQuuPmxMZ1fZQoaAZoCWgPQwj7eOi7W0U2wJSGlFKUaBVNJgFoFkdAgpSueJ53T3V9lChoBmgJaA9DCDPEsS5u0ytAlIaUUpRoFU3oA2gWR0CCmBW6K+BZdX2UKGgGaAloD0MIvTWwVYKNNsCUhpRSlGgVTWQBaBZHQIKZEr/bTMJ1fZQoaAZoCWgPQwjZWl8ktLVTQJSGlFKUaBVN6ANoFkdAgsCwJHAh0XV9lChoBmgJaA9DCN6SHLCrdGVAlIaUUpRoFU1cAWgWR0CC2ISsbNr1dX2UKGgGaAloD0MIchb2tENpYkCUhpRSlGgVTegDaBZHQILlzLOiWVx1fZQoaAZoCWgPQwgUrkfh+uRmQJSGlFKUaBVNvANoFkdAgu/qAJ9iMHV9lChoBmgJaA9DCBv2e2Id/2BAlIaUUpRoFU3oA2gWR0CC/XQemvW6dX2UKGgGaAloD0MIa7qe6DqOZUCUhpRSlGgVTV8CaBZHQIMByK508vF1fZQoaAZoCWgPQwjXogVoW99cQJSGlFKUaBVN6ANoFkdAgwrbL+xW1nV9lChoBmgJaA9DCJmAXyNJJDnAlIaUUpRoFU0CAWgWR0CDDLSpiqhldX2UKGgGaAloD0MIYhIu5JEfZECUhpRSlGgVTWcDaBZHQIMNgtYjjaR1fZQoaAZoCWgPQwhL5lje1W5iQJSGlFKUaBVN6ANoFkdAgxJAntv4unV9lChoBmgJaA9DCJYEqKllB1pAlIaUUpRoFU3oA2gWR0CDK+HGCI1tdX2UKGgGaAloD0MIxYzw9iCKYkCUhpRSlGgVTegDaBZHQIMvZDRc/t91fZQoaAZoCWgPQwhQ/u4dNcJgQJSGlFKUaBVN6ANoFkdAgzRycTakAXV9lChoBmgJaA9DCBjuXBjpLTzAlIaUUpRoFU1aAWgWR0CDOXU4JeE7dX2UKGgGaAloD0MI4PWZsz52XUCUhpRSlGgVTegDaBZHQIM5fKyOaOR1fZQoaAZoCWgPQwgsLLgf8IJTQJSGlFKUaBVN6ANoFkdAgz7DwH7gsXV9lChoBmgJaA9DCLYr9MGy2WlAlIaUUpRoFU2UAWgWR0CDQpSCOFQEdX2UKGgGaAloD0MIkjzX9+HNW0CUhpRSlGgVTegDaBZHQINC+KMvRJF1fZQoaAZoCWgPQwiR8pNqn7VeQJSGlFKUaBVN6ANoFkdAg0QIgFHJ93V9lChoBmgJaA9DCBkCgGPPxmhAlIaUUpRoFU2dAWgWR0CDR+dnTRYzdX2UKGgGaAloD0MISnzuBPugY0CUhpRSlGgVTegDaBZHQINH6x7iQ1d1fZQoaAZoCWgPQwjlt+hkqSUpwJSGlFKUaBVL+GgWR0CDd9aM72csdX2UKGgGaAloD0MIoTAo02gMaUCUhpRSlGgVTZEBaBZHQIN+xyKekHl1fZQoaAZoCWgPQwhHx9XIrlgxQJSGlFKUaBVN6ANoFkdAg4Exx95Qg3V9lChoBmgJaA9DCIPab+1EN2tAlIaUUpRoFU10AWgWR0CDgk+jdpIudX2UKGgGaAloD0MIk8g+yLLcbUCUhpRSlGgVTdIBaBZHQIOS1fVqesh1fZQoaAZoCWgPQwhT6/1GOxxUQJSGlFKUaBVN6ANoFkdAg5PLTYukDnV9lChoBmgJaA9DCJZ6FoRyG2dAlIaUUpRoFU1RAmgWR0CDmmZnctXgdX2UKGgGaAloD0MIu5195UEEXUCUhpRSlGgVTegDaBZHQIOgNlPJq7B1fZQoaAZoCWgPQwjeVQ+Yh9tdQJSGlFKUaBVN6ANoFkdAg6SLmITGpHV9lChoBmgJaA9DCDSD+MCOMzZAlIaUUpRoFU0BAWgWR0CDpPvTgEU1dX2UKGgGaAloD0MIU3jQ7LqSVUCUhpRSlGgVTegDaBZHQIOwAagmJFd1fZQoaAZoCWgPQwjhtyHGazFqQJSGlFKUaBVNYgJoFkdAg7FbBGhEjXV9lChoBmgJaA9DCFlRg2kYHVpAlIaUUpRoFU3oA2gWR0CD6XnnMdLhdX2UKGgGaAloD0MIwELmyiD5YUCUhpRSlGgVTegDaBZHQIPu/Uc4o7V1fZQoaAZoCWgPQwg+QPflzNhYQJSGlFKUaBVN6ANoFkdAg/FR6F/QSnV9lChoBmgJaA9DCFlqvd9oIV1AlIaUUpRoFU3oA2gWR0CD95RQaaTfdX2UKGgGaAloD0MI2jo42BtEYECUhpRSlGgVTegDaBZHQIP3mgg5imV1fZQoaAZoCWgPQwjA7QkSW6VhQJSGlFKUaBVN6ANoFkdAhCwKtga3qnV9lChoBmgJaA9DCCNozCTqCVhAlIaUUpRoFU3oA2gWR0CENE1iONo8dX2UKGgGaAloD0MIfxKfO8H0VECUhpRSlGgVTegDaBZHQIQ3JcRlHz91fZQoaAZoCWgPQwhPkxlvK+UvQJSGlFKUaBVL82gWR0CEN5FUADJVdX2UKGgGaAloD0MIVYZxN4jSR0CUhpRSlGgVTWEBaBZHQIRAprrPdEd1fZQoaAZoCWgPQwhtyhXe5ZRRQJSGlFKUaBVN6ANoFkdAhErgA6uGK3V9lChoBmgJaA9DCLgBnx9GqF5AlIaUUpRoFU3oA2gWR0CES+eaKDTSdX2UKGgGaAloD0MIKCzxgLJFM8CUhpRSlGgVTQQBaBZHQIRQmsmv4dp1fZQoaAZoCWgPQwh6U5EKY95YQJSGlFKUaBVN6ANoFkdAhFJPvjOs1nV9lChoBmgJaA9DCLmOccXFfTzAlIaUUpRoFUv7aBZHQIRWssrd30R1fZQoaAZoCWgPQwjsEtVbA99dQJSGlFKUaBVN6ANoFkdAhFcrpRoAXHV9lChoBmgJaA9DCJEKYwtBEmBAlIaUUpRoFU3oA2gWR0CEWpbnoxHodX2UKGgGaAloD0MIoYZvYV3wYkCUhpRSlGgVTegDaBZHQIRa74QBgeB1fZQoaAZoCWgPQwgEIVnABK9aQJSGlFKUaBVN6ANoFkdAhGNr5ylvZXV9lChoBmgJaA9DCK4QVmMJiFRAlIaUUpRoFU3oA2gWR0CEZHg1FYuCdX2UKGgGaAloD0MI1As+zcmhQ8CUhpRSlGgVTRIBaBZHQIRuSFVT72t1fZQoaAZoCWgPQwiuoGmJldHRP5SGlFKUaBVNPwFoFkdAhG6hQemvXHV9lChoBmgJaA9DCJiJIqRupzpAlIaUUpRoFU0VAWgWR0CEc9N34bjtdX2UKGgGaAloD0MIP1jGhm62G8CUhpRSlGgVTTkBaBZHQIR8ZX8wYch1fZQoaAZoCWgPQwhUxVT6CfdBwJSGlFKUaBVNIwFoFkdAhIVXlKbrknV9lChoBmgJaA9DCDUk7rH0HVdAlIaUUpRoFU3oA2gWR0CEkpg3tKI0dX2UKGgGaAloD0MIwtzu5T4FXECUhpRSlGgVTegDaBZHQISaEpVjqfR1fZQoaAZoCWgPQwgc7E0MSUVgQJSGlFKUaBVN6ANoFkdAhJoX2dupCXV9lChoBmgJaA9DCAhYq3bN6mlAlIaUUpRoFU1eAmgWR0CEnwSnLq2SdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52d547a11d817f657ff6f0c41e7b20de90b2f80afe2ec4aaf2a304ee5e610588
|
3 |
+
size 144148
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8f2a29f710>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8f2a29f7a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8f2a29f830>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8f2a29f8c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8f2a29f950>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8f2a29f9e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8f2a29fa70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8f2a29fb00>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8f2a29fb90>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8f2a29fc20>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8f2a29fcb0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f8f2a2f32a0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1656253598.0861568,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAMxeCu/aQY7r/c7w7xQ+ZOGKEhbtDz3G6AACAPwAAgD/40bG+SahQPU6SFz6LQxO+S/aOPVPgEj4AAAAAAAAAAPNnej42DHW8HzS/u4A6mDlUkty97s53OgAAgD8AAIA/ALk3vabGtz+e9Z2+7QxWvZpiwLwjpVy9AAAAAAAAAAAmYOm9Uujcuf7+qjqJrYq5dDsyu7NYvLkAAIA/AACAPxrkF72P3hC6qjm/vO5TJra+VFi7OpGYNQAAgD8AAIA/ynuMPkA9oj5sKBi9+fGOvo54cz1ZjoI9AAAAAAAAAADGcDU+YYOFO6ZAkzt0X+g48hMSPfgErboAAIA/AACAP1OeSj6F3vQ81qfivIvL87qGiYY+Mz9YvAAAgD8AAIA/9pSMvtpIoT9GxLK+KkfpvncaiL4hxUm9AAAAAAAAAADzwK09Wh+dPxog1zzxgXe+bBEAPtGhFr4AAAAAAAAAAGM5rj5JyR09xXqsvKFWQrpi7xY+4Hz3OwAAgD8AAIA/OqAfvpyzbj++qG48q+aFvqkEkrveioc9AAAAAAAAAABT0II+YwEMPTaKgjoC0G45ZC+ePr7X07kAAIA/AACAP80eND0fVcy5mtCcuxkLUDXHgLe7w3m+tAAAgD8AAIA/Dc7FPfZUEroiONa7LI1qtUNgyzkKus80AACAPwAAgD+UdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMhzPZ0BHScCUhpRSlIwBbJRNBQGMAXSUR0CBpXKaoddWdX2UKGgGaAloD0MIBMjQsYNySUCUhpRSlGgVTegDaBZHQIGrwZbY9Pl1fZQoaAZoCWgPQwhCQ/8EF+lfQJSGlFKUaBVN6ANoFkdAgbGUWl/H53V9lChoBmgJaA9DCGSRJt4BLhXAlIaUUpRoFUvyaBZHQIG27A1vVEx1fZQoaAZoCWgPQwhFEOfhhL1iQJSGlFKUaBVN6ANoFkdAgbiupCKJmHV9lChoBmgJaA9DCJKWytsRDltAlIaUUpRoFU3oA2gWR0CBu1hJiAlOdX2UKGgGaAloD0MIJjrLLEIvZkCUhpRSlGgVTeIDaBZHQIG8+hZha1V1fZQoaAZoCWgPQwgyIeaSqgRhQJSGlFKUaBVN6ANoFkdAgb5Y/3WWhXV9lChoBmgJaA9DCJrN4zCYPylAlIaUUpRoFU0VAWgWR0CBv1XmNipedX2UKGgGaAloD0MIe5+qQgMhW0CUhpRSlGgVTegDaBZHQIHA6B5HEuR1fZQoaAZoCWgPQwgXoG01615JwJSGlFKUaBVLwmgWR0CBxp1HvttzdX2UKGgGaAloD0MIXHaIf9hxUkCUhpRSlGgVTegDaBZHQIHHU7r9l3B1fZQoaAZoCWgPQwjVWS2wxwQPwJSGlFKUaBVNBwFoFkdAgdDwhOgxrXV9lChoBmgJaA9DCGTKh6BquVZAlIaUUpRoFU3oA2gWR0CB01vv0AcUdX2UKGgGaAloD0MIdv9YiA77RsCUhpRSlGgVTSABaBZHQIHYeKqGUOd1fZQoaAZoCWgPQwgHDJI+LVRhQJSGlFKUaBVN6ANoFkdAgdkDQAuIynV9lChoBmgJaA9DCLX8wFWerEDAlIaUUpRoFUvNaBZHQIHaxujynUF1fZQoaAZoCWgPQwiR0QFJ2MZXQJSGlFKUaBVN6ANoFkdAgeLJSzgMt3V9lChoBmgJaA9DCIi6D0BqW2pAlIaUUpRoFU3CAWgWR0CCC+Ly+YdAdX2UKGgGaAloD0MI2GFM+vvlZECUhpRSlGgVTegDaBZHQIIXIEGJN0x1fZQoaAZoCWgPQwgEyxEykEFgQJSGlFKUaBVN6ANoFkdAgjTaY3Ns33V9lChoBmgJaA9DCHwpPGh2JltAlIaUUpRoFU3oA2gWR0CCRtGtITXbdX2UKGgGaAloD0MImrLTD+r2XUCUhpRSlGgVTegDaBZHQIJN2GATZg51fZQoaAZoCWgPQwiEYitoWnFcQJSGlFKUaBVN6ANoFkdAgmHBGYrrgXV9lChoBmgJaA9DCCieswWE3FFAlIaUUpRoFU3oA2gWR0CCaYQ9zOopdX2UKGgGaAloD0MImUhpNo8iVUCUhpRSlGgVTegDaBZHQIJrQzUI9kl1fZQoaAZoCWgPQwgfv7fpz+hYQJSGlFKUaBVN6ANoFkdAgm3A4ffXPXV9lChoBmgJaA9DCGK/J9YpBmlAlIaUUpRoFU0UAmgWR0CCcCbPQfITdX2UKGgGaAloD0MIVW03wTcHXkCUhpRSlGgVTegDaBZHQIJ3c7nxJ/Z1fZQoaAZoCWgPQwgjaTf6mNRZQJSGlFKUaBVN6ANoFkdAgoUsVk+X7nV9lChoBmgJaA9DCJD0aRX9PFZAlIaUUpRoFU3oA2gWR0CCiEm2LHdXdX2UKGgGaAloD0MIh97i4T2HAkCUhpRSlGgVTQUBaBZHQIKMmstCiRJ1fZQoaAZoCWgPQwgaidAINhteQJSGlFKUaBVN6ANoFkdAgo5T9S/CZXV9lChoBmgJaA9DCGhaYmU0jGFAlIaUUpRoFU3oA2gWR0CCjt2ovSMMdX2UKGgGaAloD0MIpyIVxhY6S0CUhpRSlGgVTegDaBZHQIKQuuPmxMZ1fZQoaAZoCWgPQwj7eOi7W0U2wJSGlFKUaBVNJgFoFkdAgpSueJ53T3V9lChoBmgJaA9DCDPEsS5u0ytAlIaUUpRoFU3oA2gWR0CCmBW6K+BZdX2UKGgGaAloD0MIvTWwVYKNNsCUhpRSlGgVTWQBaBZHQIKZEr/bTMJ1fZQoaAZoCWgPQwjZWl8ktLVTQJSGlFKUaBVN6ANoFkdAgsCwJHAh0XV9lChoBmgJaA9DCN6SHLCrdGVAlIaUUpRoFU1cAWgWR0CC2ISsbNr1dX2UKGgGaAloD0MIchb2tENpYkCUhpRSlGgVTegDaBZHQILlzLOiWVx1fZQoaAZoCWgPQwgUrkfh+uRmQJSGlFKUaBVNvANoFkdAgu/qAJ9iMHV9lChoBmgJaA9DCBv2e2Id/2BAlIaUUpRoFU3oA2gWR0CC/XQemvW6dX2UKGgGaAloD0MIa7qe6DqOZUCUhpRSlGgVTV8CaBZHQIMByK508vF1fZQoaAZoCWgPQwjXogVoW99cQJSGlFKUaBVN6ANoFkdAgwrbL+xW1nV9lChoBmgJaA9DCJmAXyNJJDnAlIaUUpRoFU0CAWgWR0CDDLSpiqhldX2UKGgGaAloD0MIYhIu5JEfZECUhpRSlGgVTWcDaBZHQIMNgtYjjaR1fZQoaAZoCWgPQwhL5lje1W5iQJSGlFKUaBVN6ANoFkdAgxJAntv4unV9lChoBmgJaA9DCJYEqKllB1pAlIaUUpRoFU3oA2gWR0CDK+HGCI1tdX2UKGgGaAloD0MIxYzw9iCKYkCUhpRSlGgVTegDaBZHQIMvZDRc/t91fZQoaAZoCWgPQwhQ/u4dNcJgQJSGlFKUaBVN6ANoFkdAgzRycTakAXV9lChoBmgJaA9DCBjuXBjpLTzAlIaUUpRoFU1aAWgWR0CDOXU4JeE7dX2UKGgGaAloD0MI4PWZsz52XUCUhpRSlGgVTegDaBZHQIM5fKyOaOR1fZQoaAZoCWgPQwgsLLgf8IJTQJSGlFKUaBVN6ANoFkdAgz7DwH7gsXV9lChoBmgJaA9DCLYr9MGy2WlAlIaUUpRoFU2UAWgWR0CDQpSCOFQEdX2UKGgGaAloD0MIkjzX9+HNW0CUhpRSlGgVTegDaBZHQINC+KMvRJF1fZQoaAZoCWgPQwiR8pNqn7VeQJSGlFKUaBVN6ANoFkdAg0QIgFHJ93V9lChoBmgJaA9DCBkCgGPPxmhAlIaUUpRoFU2dAWgWR0CDR+dnTRYzdX2UKGgGaAloD0MISnzuBPugY0CUhpRSlGgVTegDaBZHQINH6x7iQ1d1fZQoaAZoCWgPQwjlt+hkqSUpwJSGlFKUaBVL+GgWR0CDd9aM72csdX2UKGgGaAloD0MIoTAo02gMaUCUhpRSlGgVTZEBaBZHQIN+xyKekHl1fZQoaAZoCWgPQwhHx9XIrlgxQJSGlFKUaBVN6ANoFkdAg4Exx95Qg3V9lChoBmgJaA9DCIPab+1EN2tAlIaUUpRoFU10AWgWR0CDgk+jdpIudX2UKGgGaAloD0MIk8g+yLLcbUCUhpRSlGgVTdIBaBZHQIOS1fVqesh1fZQoaAZoCWgPQwhT6/1GOxxUQJSGlFKUaBVN6ANoFkdAg5PLTYukDnV9lChoBmgJaA9DCJZ6FoRyG2dAlIaUUpRoFU1RAmgWR0CDmmZnctXgdX2UKGgGaAloD0MIu5195UEEXUCUhpRSlGgVTegDaBZHQIOgNlPJq7B1fZQoaAZoCWgPQwjeVQ+Yh9tdQJSGlFKUaBVN6ANoFkdAg6SLmITGpHV9lChoBmgJaA9DCDSD+MCOMzZAlIaUUpRoFU0BAWgWR0CDpPvTgEU1dX2UKGgGaAloD0MIU3jQ7LqSVUCUhpRSlGgVTegDaBZHQIOwAagmJFd1fZQoaAZoCWgPQwjhtyHGazFqQJSGlFKUaBVNYgJoFkdAg7FbBGhEjXV9lChoBmgJaA9DCFlRg2kYHVpAlIaUUpRoFU3oA2gWR0CD6XnnMdLhdX2UKGgGaAloD0MIwELmyiD5YUCUhpRSlGgVTegDaBZHQIPu/Uc4o7V1fZQoaAZoCWgPQwg+QPflzNhYQJSGlFKUaBVN6ANoFkdAg/FR6F/QSnV9lChoBmgJaA9DCFlqvd9oIV1AlIaUUpRoFU3oA2gWR0CD95RQaaTfdX2UKGgGaAloD0MI2jo42BtEYECUhpRSlGgVTegDaBZHQIP3mgg5imV1fZQoaAZoCWgPQwjA7QkSW6VhQJSGlFKUaBVN6ANoFkdAhCwKtga3qnV9lChoBmgJaA9DCCNozCTqCVhAlIaUUpRoFU3oA2gWR0CENE1iONo8dX2UKGgGaAloD0MIfxKfO8H0VECUhpRSlGgVTegDaBZHQIQ3JcRlHz91fZQoaAZoCWgPQwhPkxlvK+UvQJSGlFKUaBVL82gWR0CEN5FUADJVdX2UKGgGaAloD0MIVYZxN4jSR0CUhpRSlGgVTWEBaBZHQIRAprrPdEd1fZQoaAZoCWgPQwhtyhXe5ZRRQJSGlFKUaBVN6ANoFkdAhErgA6uGK3V9lChoBmgJaA9DCLgBnx9GqF5AlIaUUpRoFU3oA2gWR0CES+eaKDTSdX2UKGgGaAloD0MIKCzxgLJFM8CUhpRSlGgVTQQBaBZHQIRQmsmv4dp1fZQoaAZoCWgPQwh6U5EKY95YQJSGlFKUaBVN6ANoFkdAhFJPvjOs1nV9lChoBmgJaA9DCLmOccXFfTzAlIaUUpRoFUv7aBZHQIRWssrd30R1fZQoaAZoCWgPQwjsEtVbA99dQJSGlFKUaBVN6ANoFkdAhFcrpRoAXHV9lChoBmgJaA9DCJEKYwtBEmBAlIaUUpRoFU3oA2gWR0CEWpbnoxHodX2UKGgGaAloD0MIoYZvYV3wYkCUhpRSlGgVTegDaBZHQIRa74QBgeB1fZQoaAZoCWgPQwgEIVnABK9aQJSGlFKUaBVN6ANoFkdAhGNr5ylvZXV9lChoBmgJaA9DCK4QVmMJiFRAlIaUUpRoFU3oA2gWR0CEZHg1FYuCdX2UKGgGaAloD0MI1As+zcmhQ8CUhpRSlGgVTRIBaBZHQIRuSFVT72t1fZQoaAZoCWgPQwiuoGmJldHRP5SGlFKUaBVNPwFoFkdAhG6hQemvXHV9lChoBmgJaA9DCJiJIqRupzpAlIaUUpRoFU0VAWgWR0CEc9N34bjtdX2UKGgGaAloD0MIP1jGhm62G8CUhpRSlGgVTTkBaBZHQIR8ZX8wYch1fZQoaAZoCWgPQwhUxVT6CfdBwJSGlFKUaBVNIwFoFkdAhIVXlKbrknV9lChoBmgJaA9DCDUk7rH0HVdAlIaUUpRoFU3oA2gWR0CEkpg3tKI0dX2UKGgGaAloD0MIwtzu5T4FXECUhpRSlGgVTegDaBZHQISaEpVjqfR1fZQoaAZoCWgPQwgc7E0MSUVgQJSGlFKUaBVN6ANoFkdAhJoX2dupCXV9lChoBmgJaA9DCAhYq3bN6mlAlIaUUpRoFU1eAmgWR0CEnwSnLq2SdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a279aa45e5b364230db4921f439213a298e75f921592f1003d71e74ad8585d7b
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae035cc51147e782d2999dd0408b4d1015dd15790b5f21fa583a367f4a887e9e
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a82efae882bef8d6b47cef7f44bbf9a9482f958653fc96955898946ea9e258a
|
3 |
+
size 260057
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -27.769632814009675, "std_reward": 26.114986742596766, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-26T15:01:26.904961"}
|