|
--- |
|
license: apache-2.0 |
|
base_model: retrieva-jp/bert-1.3b |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: out |
|
results: [] |
|
--- |
|
|
|
# retriva-bert-preference-classifier |
|
|
|
This model is a fine-tuned version of [retrieva-jp/bert-1.3b](https://huggingface.co/retrieva-jp/bert-1.3b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4714 |
|
- Accuracy: 0.737 |
|
- Precision: 0.7423 |
|
- Recall: 0.726 |
|
- F1: 0.7341 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.6438 | 0.0080 | 100 | 0.6116 | 0.663 | 0.8721 | 0.382 | 0.5313 | |
|
| 0.5113 | 0.0160 | 200 | 0.5442 | 0.699 | 0.6736 | 0.772 | 0.7195 | |
|
| 0.4512 | 0.0240 | 300 | 0.5119 | 0.717 | 0.8359 | 0.54 | 0.6561 | |
|
| 0.3916 | 0.0321 | 400 | 0.4936 | 0.702 | 0.7295 | 0.642 | 0.6830 | |
|
| 0.3806 | 0.0401 | 500 | 0.4763 | 0.715 | 0.7708 | 0.612 | 0.6823 | |
|
| 0.3581 | 0.0481 | 600 | 0.4597 | 0.754 | 0.75 | 0.762 | 0.7560 | |
|
| 0.3308 | 0.0561 | 700 | 0.4690 | 0.742 | 0.7738 | 0.684 | 0.7261 | |
|
| 0.3458 | 0.0641 | 800 | 0.4703 | 0.737 | 0.7423 | 0.726 | 0.7341 | |
|
| 0.3475 | 0.0721 | 900 | 0.4728 | 0.737 | 0.7495 | 0.712 | 0.7303 | |
|
| 0.3435 | 0.0801 | 1000 | 0.4714 | 0.737 | 0.7423 | 0.726 | 0.7341 | |
|
|
|
### Evaluation on test split |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/651e3f30ca333f3c8df692b8/9lbpMeSt30w_KSd4hZKxe.png) |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.1 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|