ryusangwon's picture
Model save
fffc2ab verified
metadata
license: apache-2.0
base_model: tsmatz/mt5_summarize_japanese
tags:
  - generated_from_trainer
datasets:
  - xlsum
metrics:
  - rouge
model-index:
  - name: mt5_summarize_japanese-6051-japanese
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: xlsum
          type: xlsum
          config: japanese
          split: validation
          args: japanese
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.3394

mt5_summarize_japanese-6051-japanese

This model is a fine-tuned version of tsmatz/mt5_summarize_japanese on the xlsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1045
  • Rouge1: 0.3394
  • Rouge2: 0.0501
  • Rougel: 0.3328
  • Rougelsum: 0.3321
  • Gen Len: 31.8808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.3889 4.5 500 1.1112 0.3381 0.05 0.3306 0.3302 31.3127
1.3351 8.99 1000 1.1045 0.3394 0.0501 0.3328 0.3321 31.8808

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0