--- license: apache-2.0 base_model: tsmatz/mt5_summarize_japanese tags: - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: mt5_summarize_japanese-6051-japanese results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum config: japanese split: validation args: japanese metrics: - name: Rouge1 type: rouge value: 0.3394 --- # mt5_summarize_japanese-6051-japanese This model is a fine-tuned version of [tsmatz/mt5_summarize_japanese](https://huggingface.co/tsmatz/mt5_summarize_japanese) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 1.1045 - Rouge1: 0.3394 - Rouge2: 0.0501 - Rougel: 0.3328 - Rougelsum: 0.3321 - Gen Len: 31.8808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.3889 | 4.5 | 500 | 1.1112 | 0.3381 | 0.05 | 0.3306 | 0.3302 | 31.3127 | | 1.3351 | 8.99 | 1000 | 1.1045 | 0.3394 | 0.0501 | 0.3328 | 0.3321 | 31.8808 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0