File size: 7,585 Bytes
db45d00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# Copied from rut5compressed/util.py of rut5compressed repository.
import logging
import re
from functools import wraps
from re import Pattern
from typing import Callable, Dict, Optional, Tuple
import numpy as np
import torch as T
from .modules import SVDCompressedLinear
def map_module(root: T.nn.Module,
func: Callable[[T.nn.Module, str], T.nn.Module],
patt: Optional[str] = None) -> T.nn.Module:
"""Function ``map_module`` applies a function to each leaf of module tree
which matches to a specified pattern.
Parameters
----------
root : torch.nn.Module
Module to modify.
func : callable
Function to be applied to every module (or matched to pattern) in
module tree.
patt : str, optional
Pattern to filter modules by path in module tree.
Returns
-------
torch.nn.Module
Module modified in-place.
"""
@wraps(func)
def func_safe(*args, **kwargs):
node = func(*args, **kwargs)
if not isinstance(node, T.nn.Module):
raise ValueError('Mapped result must be toch.nn.Module type '
f'but given {type(node)}.')
return node
return _map_module(root, func_safe, re.compile(patt or r'.*'), '')
def _map_module(root: T.nn.Module,
func: Callable[[T.nn.Module, str], T.nn.Module], patt: Pattern,
path: str) -> T.nn.Module:
for name, child in root.named_children():
node = _map_module(child, func, patt, f'{path}/{name}')
if node != child:
setattr(root, name, node)
if patt.match(path or '/'):
root = func(root, path or '/')
return root
def convert_linear(module: T.nn.Linear, ctor, **kwargs) -> T.nn.Module:
"""Function convert_linear takes module and returns linear module with
approximate matmul. Non-linear modules are returned intact.
"""
if not isinstance(module, T.nn.Linear):
return module
raise NotImplementedError
def numel(module: T.nn.Module):
value = sum(x.numel() for x in module.parameters()) + \
sum(x.numel() for x in module.buffers())
def account_prunned(module: T.nn.Module, path: str):
nonlocal value
for name, attr in vars(module).items():
if not name.endswith('_mask') or not isinstance(attr, T.Tensor):
continue
weight_name = name[:-5]
if not hasattr(module, weight_name):
continue
weight = getattr(module, weight_name)
value -= weight.numel() - attr.sum()
value += attr.numel()
return module
def account_quantized(module: T.nn.Module, path: str):
nonlocal value
if isinstance(module, T.nn.quantized.Linear):
value += module.weight().numel()
if module.bias() is not None:
value += module.bias().numel()
return module
def account_rest(module: T.nn.Module, path: str):
account_prunned(module, path)
account_quantized(module, path)
return module
map_module(module, account_rest)
return value
def sizeof(module: T.nn.Module):
value = sum(x.numel() * x.element_size() for x in module.parameters()) + \
sum(x.numel() * x.element_size() for x in module.buffers())
def account_prunned(module: T.nn.Module, path: str):
nonlocal value
for name, attr in vars(module).items():
if not name.endswith('_mask') or not isinstance(attr, T.Tensor):
continue
weight_name = name[:-5]
if not hasattr(module, weight_name):
continue
weight = getattr(module, weight_name)
value -= (weight.numel() - attr.sum()) * weight.element_size()
value += attr.numel() * attr.element_size()
return module
def account_quantized(module: T.nn.Module, path: str):
nonlocal value
if isinstance(module, T.nn.quantized.Linear):
value += module.weight().numel() * module.weight().element_size()
if (bias := module.bias()) is not None:
value += bias.numel() * bias.element_size()
return module
def account_rest(module: T.nn.Module, path: str):
account_prunned(module, path)
account_quantized(module, path)
return module
map_module(module, account_rest)
return value
def flatten_module(module: T.nn.Module, regexp=None) -> Dict[str, T.nn.Module]:
modules = {}
map_module(module, lambda x, y: modules.update(**{y: x}) or x, regexp)
return modules
def print_flatten(module: T.nn.Module):
paths = []
path_len = 0
names = []
name_len = 0
indx_len = 0
def func(module, path):
nonlocal path_len, name_len, indx_len
paths.append(path)
path_len = max(path_len, len(path))
name = module.__class__.__name__
names.append(name)
name_len = max(name_len, len(name))
indx_len += 1
return module
map_module(module, func)
indx_len = int(np.ceil(np.log10(indx_len)))
fmt = f'{{indx:>{indx_len}s}} {{path:{path_len}s}} {{name:{name_len}s}}'
print(fmt.format(indx='#', path='Path', name='Layer'))
print('-' * (indx_len + path_len + name_len + 2))
for i, (path, name) in enumerate(zip(paths, names)):
print(fmt.format(indx=str(i), path=path, name=name))
def compress_linear_svd(module: T.nn.Module, path: str,
rank: Optional[int] = None) -> T.nn.Module:
if not isinstance(module, T.nn.Linear):
return module
# Do not factorize if ranks equals to the size of the
# smallest dimension.
norows, nocols = module.weight.shape
if rank == min(norows, nocols):
return module
# If there is no rank, then choose rank to be equal point when the number
# of elements in original matrix is approximately equal to the number of
# elements in SVD factors.
if rank is None:
ratio = norows * nocols / (norows + nocols)
rank = int(np.floor(ratio))
return SVDCompressedLinear.from_linear(module, rank)
def compress_linear_tt(module: T.nn.Module, path: str,
shape: Tuple[Tuple[int], Tuple[int]],
rank: int) -> T.nn.Module:
if not isinstance(module, T.nn.Linear):
return module
# TODO(@not-found): We need propper compression config.
inp_size = np.prod(shape[0])
out_size = np.prod(shape[1])
if inp_size == module.in_features and out_size == module.out_features:
pass
elif inp_size == module.out_features and out_size == module.in_features:
shape = (shape[1], shape[0])
else:
raise ValueError(
'Input and output features does not match to compression shape: '
f'{shape[0]} vs {module.in_features} and {shape[1]} vs '
f'{module.out_features}.')
logging.info('apply tt compression to layer %s', path)
return TTCompressedLinear.from_linear(module, shape, rank) # noqa: F821
def compress(module: T.nn.Module, rank: int) -> T.nn.Module:
"""Function compress substitutes in-place linear layer of T5 model with
linear layer which weight matrix is factorized with SVD.
:param module: Model to compress.
:param rank: Desired rank of compressed layer.
"""
return map_module(
root=module,
func=lambda x, y: compress_linear_svd(x, y, rank),
patt=r'.*/DenseReluDense/w.*') # TODO(@not-found): Remove?
|