--- language: - ur metrics: - accuracy library_name: transformers tags: - text-generation-inference --- # Model Card for Model ID This model card lists fine-tuned byT5 model for the task of Semantic Parsing. ## Model Details We worked on a pre-trained byt5-base model and fine-tuned it with the Parallel Meaning Bank dataset (DRS-Text pairs dataset). Furthermore, we enriched the gold_silver flavors of PMB (release 5.0.0) with different augmentation strategies. ## Uses To use the model, follow the code below for a quick response. ```python from transformers import ByT5Tokenizer, T5ForConditionalGeneration # Initialize the tokenizer and model tokenizer = ByT5Tokenizer.from_pretrained('saadamin2k13/urdu_semantic_parsing', max_length=512) model = T5ForConditionalGeneration.from_pretrained('saadamin2k13/urdu_semantic_parsing') # Example sentence example = "یہ کار کالی ہے۔" # Tokenize and prepare the input x = tokenizer(example, return_tensors='pt', padding=True, truncation=True, max_length=512)['input_ids'] # Generate output output = model.generate(x) # Decode and print the output text pred_text = tokenizer.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(pred_text)