sabersol commited on
Commit
4e81dd6
·
1 Parent(s): c31051c

class created

Browse files
Files changed (3) hide show
  1. .gitignore +2 -0
  2. explainableai.py +58 -0
  3. finetune-emotions.py +42 -0
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ __pycache__/
2
+ .DS_Store
explainableai.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, Trainer, TrainingArguments
2
+ from sklearn.metrics import accuracy_score, f1_score
3
+
4
+ import numpy as np
5
+
6
+ CITDA_EPOCHS = 10
7
+ CITDA_WEIGHT_DECAY = 0.05 # L2 regularization
8
+ CITDA_BATCH_SIZE = 32
9
+ CITDA_LEARNINGRATE= 2e-5
10
+
11
+ class CITDA:
12
+ def __init__(self, model, labels, base_model_name, tokenizer, encoded_data):
13
+ self.labels = labels
14
+ # self.device = device
15
+ self.tokenizer = tokenizer
16
+ self.model = model
17
+ self.encoded_data = encoded_data
18
+
19
+ def _get_trainer(self):
20
+ def compute_metrics(pred):
21
+ labels = pred.label_ids
22
+ preds = pred.predictions.argmax(-1)
23
+ f1 = f1_score(labels, preds, average="weighted")
24
+ acc = accuracy_score(labels, preds)
25
+ return {"accuracy": acc, "f1": f1}
26
+
27
+ training_args = TrainingArguments(output_dir="results",
28
+ num_train_epochs=CITDA_EPOCHS,
29
+ learning_rate=CITDA_LEARNINGRATE,
30
+ per_device_train_batch_size=CITDA_BATCH_SIZE,
31
+ per_device_eval_batch_size=CITDA_BATCH_SIZE,
32
+ load_best_model_at_end=True,
33
+ metric_for_best_model="f1",
34
+ weight_decay=CITDA_WEIGHT_DECAY,
35
+ evaluation_strategy="epoch",
36
+ save_strategy="epoch",
37
+ disable_tqdm=False)
38
+ trainer = Trainer(model=self.model, tokenizer=self.tokenizer, args=training_args,
39
+ compute_metrics=compute_metrics,
40
+ train_dataset = self.encoded_data["train"],
41
+ eval_dataset = self.encoded_data["validation"],
42
+ report_to="wandb")
43
+ return trainer
44
+
45
+ def train(self):
46
+ trainer = self._get_trainer()
47
+ results = trainer.evaluate()
48
+ preds_output = trainer.predict(encoded_data["validation"])
49
+
50
+ y_valid = np.array(encoded_data["validation"]["label"])
51
+ y_preds = np.argmax(preds_output.predictions, axis=1)
52
+
53
+ #Saving the fine-tuned model
54
+ self.model.save_pretrained('./model')
55
+ self.tokenizer.save_pretrained('./model')
56
+
57
+ return y_valid, y_pred
58
+
finetune-emotions.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Modified https://github.com/bhadreshpsavani/ExploringSentimentalAnalysis/blob/main/SentimentalAnalysisWithDistilbert.ipynb
2
+
3
+ import torch
4
+ from sklearn.metrics import confusion_matrix
5
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
6
+ from datasets import load_dataset
7
+ #import matplotlib.pyplot as plt
8
+ import seaborn as sns
9
+ import explainableai
10
+
11
+ BASE_MODEL_NAME = "bert-base-uncased"
12
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
13
+
14
+
15
+ def save_confusion_matrix(y_valid, y_preds):
16
+ cm = confusion_matrix(y_valid, y_preds)
17
+ f = sns.heatmap(cm, annot=True, fmt='d')
18
+ f.figure.savefig("confusion_matrix.png")
19
+
20
+ def get_encoded_data(tokenizer):
21
+ def tokenize(batch):
22
+ return tokenizer(batch["text"], padding=True, truncation=True)
23
+ emotions = load_dataset("emotion")
24
+ emotions_encoded = emotions.map(tokenize, batched=True, batch_size=None)
25
+ emotions_encoded.set_format("torch", columns=["input_ids", "attention_mask", "label"])
26
+ return emotions_encoded
27
+ if __name__ == "__main__":
28
+ labels = ['sadness', 'joy', 'love', 'anger', 'fear', 'surprise']
29
+ model = AutoModelForSequenceClassification.from_pretrained(
30
+ pretrained_model_name_or_path = BASE_MODEL_NAME,
31
+ num_labels = len(labels),
32
+ id2label=[{i: labels[i]} for i in range(len(labels))],
33
+ resume_download=True,).to(device)
34
+
35
+ tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME)
36
+
37
+ encoded_data = get_encoded_data(tokenizer)
38
+ citda = explainableai.CITDA(model, labels, BASE_MODEL_NAME, tokenizer, encoded_data)
39
+ y_valid, y_pred = citda.train()
40
+
41
+ save_confusion_matrix(y_valid, y_preds)
42
+ print("y_valid=",len(y_valid), "y_pred=", len(y_pred))