saeedHedayatian commited on
Commit
c82185f
1 Parent(s): 08f9bc3

Added trained model

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 285.11 +/- 17.64
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa96d89aa70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa96d89ab00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa96d89ab90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa96d89ac20>", "_build": "<function ActorCriticPolicy._build at 0x7fa96d89acb0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa96d89ad40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa96d89add0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa96d89ae60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa96d89aef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa96d89af80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa96d8a0050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa96d8e3a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVbgAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCdmaUXZQoS4BLQEtAZYwCcGmUXZQoS0BLgEtAS0BldWF1Lg==", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [{"vf": [128, 64, 64], "pi": [64, 128, 64, 64]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651788539.3275006, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJqUzTzXIim7z4eNvJXthDwZVTC8kF5kPQAAgD8AAIA/ZuzdPEZ3rT87bgQ+B469vhH6gT3aytg9AAAAAAAAAACT3Gk+S3QhPwnbMj1DZg2/tvXEPhYItb0AAAAAAAAAAGa1hj0f8Z+77O6TvWPjTL5S9KO8feR2PgAAgD8AAAAAZsJQvQsAMD82P3m9WRmCv4Z2Zr2edYa9AAAAAAAAAAAAFLg8heOauTpZHL23M7w87HhYO7elpD0AAIA/AACAP/OB1j2NXTM+YEByviwWAL9W1HA6JRIlvgAAAAAAAAAAQB64vYmeXD3WNW0+h0Fbvg1ANDv4CbM8AAAAAAAAAACz4p09lGljP27B0T3W1nu/9HwSPgY7WbwAAAAAAAAAAPN/vz1Icbk797UAPVZOk7wCn8U92FCOvAAAAAAAAIA/86aFPSm8SLrJO0sylZiEsQ/jhju6FkqzAACAPwAAgD8Awmg8n7ShPxVp0z0xcTG/tY/aPIKZxD0AAAAAAAAAAM2Rcr1JMu8++wSNPUrbN78puHC9sEfcOwAAAAAAAAAAALLnvMOhKrqXiMm6uk8YtnL0PrsjBuw5AACAPwAAgD8DnVi+GUviPkj4lj6TZ/y+pI0gvY6YNT4AAAAAAAAAAOAtUj4TQNw+uxJtvuTtLb/YIOk9SkddvgAAAAAAAAAAzfzjOv6ptD/VI7Q9dtOuuoA2Aru7iKG8AAAAAAAAAADm5E894eiYulYU4bxOnVQ0GwmFuv5W2bMAAIA/AACAP/PRoL3plgu8KC8pPXnzQr6jTgi96vQOPwAAgD8AAIA/xpNSvnAc1j4MgMU+gUgHv5pKob3+kKg+AAAAAAAAAADNEo29hVP9uRqwqT1POCezB089u75HGLMAAIA/AACAP9r42b3D7RS6lno2PkfbHb5p47w81UZCvwAAAAAAAIA/oHssPs4p1D0bDcS+NR3uvjM9Ub3gICq+AAAAAAAAAABm9oe8pGQSOnfwGTka+3Yzi3lIvMIhPrgAAIA/AACAPxM8CL6CYQM+u9JpPgRsAL8Ao7Y9HNcQPQAAAAAAAAAAmsbJPI+2ULqzHvI2AGwKsO2h1boSVA22AACAPwAAgD9mht66j1ZNur+ILDGpQlwwgyqpOg4rADIAAIA/AACAP5r7jDwFGLY/lvesPjMUUT2QhRC87SMUuwAAAAAAAAAAAMuqveqvqT9t7Oa+V8Dfvqbal71K/Wi+AAAAAAAAAABNVQs9E8e6PwvCzT5wQDM+o65yPMg9/D0AAAAAAAAAACAVQT6HAzI/Vow1vSoE+r6AWak+R9STvQAAAAAAAAAAgFZIPVL47bkf9DG2DjOWsR2UBTsyjFo1AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYLAbtm3Lc0CUhpRSlIwBbJRLuYwBdJRHQKA1NjgAIY51fZQoaAZoCWgPQwjg1XJnJggzQJSGlFKUaBVLUWgWR0CgNWH27FsIdX2UKGgGaAloD0MIODC5USTrcUCUhpRSlGgVS9toFkdAoDVnixVyWHV9lChoBmgJaA9DCOtySkBMP3FAlIaUUpRoFUupaBZHQKA1qDPnjhl1fZQoaAZoCWgPQwhpdAexM0ZzQJSGlFKUaBVLsGgWR0CgNij5KvmpdX2UKGgGaAloD0MIgEkqU4wrc0CUhpRSlGgVS8doFkdAoDYuz8gp0HV9lChoBmgJaA9DCAqGcw2zUnNAlIaUUpRoFUuzaBZHQKA2OLk0aZR1fZQoaAZoCWgPQwg3UrZIGhlwQJSGlFKUaBVLmGgWR0CgNlrNfPX1dX2UKGgGaAloD0MI78ftl89Gc0CUhpRSlGgVS7loFkdAoDZpSm65G3V9lChoBmgJaA9DCGyx22dVqHFAlIaUUpRoFUu6aBZHQKA2bnyNGVl1fZQoaAZoCWgPQwgnhXmPM4dyQJSGlFKUaBVLx2gWR0CgNnX49HMEdX2UKGgGaAloD0MIDhR4J989cUCUhpRSlGgVS55oFkdAoDZ6fDk2gnV9lChoBmgJaA9DCGrcm9+wfXBAlIaUUpRoFUutaBZHQKA2fmV7hNx1fZQoaAZoCWgPQwjGFRdH5YtzQJSGlFKUaBVLvmgWR0CgNp0BwMpgdX2UKGgGaAloD0MI/RNcrGjGckCUhpRSlGgVS75oFkdAoDa8ngHeJ3V9lChoBmgJaA9DCOIEptO6hXFAlIaUUpRoFUuLaBZHQKA2vHhCMP11fZQoaAZoCWgPQwhQjCyZo7ZwQJSGlFKUaBVLsmgWR0CgNt5z5oGqdX2UKGgGaAloD0MIMQqCx3dOckCUhpRSlGgVS4VoFkdAoDbviT+vQnV9lChoBmgJaA9DCO+qB8xD1nJAlIaUUpRoFUutaBZHQKA3HaURnOB1fZQoaAZoCWgPQwgTtTS3wtdyQJSGlFKUaBVLw2gWR0CgNylp48lpdX2UKGgGaAloD0MI31M57emYc0CUhpRSlGgVS+poFkdAoDcv/1g6VHV9lChoBmgJaA9DCErOiT00NXBAlIaUUpRoFUuHaBZHQKA3NY+0PYp1fZQoaAZoCWgPQwhDPBIvz3hzQJSGlFKUaBVLv2gWR0CgNzhmXgLrdX2UKGgGaAloD0MIlltaDUl0ckCUhpRSlGgVS8xoFkdAoDdGNDMNdHV9lChoBmgJaA9DCH4a9+b3fnJAlIaUUpRoFUuuaBZHQKA3RiCrcTJ1fZQoaAZoCWgPQwjpZRTL7aNxQJSGlFKUaBVLr2gWR0CgOAt/4IrwdX2UKGgGaAloD0MI+G9enPiSc0CUhpRSlGgVS8FoFkdAoDgeNkvsaHV9lChoBmgJaA9DCKHzGrsEC3NAlIaUUpRoFUvZaBZHQKA4LpGnXNF1fZQoaAZoCWgPQwhihPBo44NwQJSGlFKUaBVLn2gWR0CgOGsUIsy0dX2UKGgGaAloD0MIOdTvwlZQc0CUhpRSlGgVS9RoFkdAoDiHYe1a4nV9lChoBmgJaA9DCF7WxAJf7W5AlIaUUpRoFUubaBZHQKA4jHoX9BN1fZQoaAZoCWgPQwhjR+NQf3pyQJSGlFKUaBVLxmgWR0CgOPF5fMOgdX2UKGgGaAloD0MIuqC+ZY4gcUCUhpRSlGgVS7loFkdAoDkpa/yoXXV9lChoBmgJaA9DCJ9x4UCI8nFAlIaUUpRoFUvGaBZHQKA5J+XqqwR1fZQoaAZoCWgPQwjdmnRb4sJwQJSGlFKUaBVLjmgWR0CgOVbZ39rHdX2UKGgGaAloD0MIEDtT6PyGcUCUhpRSlGgVS41oFkdAoDlXJo0yg3V9lChoBmgJaA9DCKBvC5aqk3BAlIaUUpRoFUuOaBZHQKA5qBT4tYl1fZQoaAZoCWgPQwhzK4TVGLZzQJSGlFKUaBVLw2gWR0CgOagZCOWCdX2UKGgGaAloD0MIFYxK6gRXckCUhpRSlGgVS9loFkdAoDm0rVe8f3V9lChoBmgJaA9DCImXp3PFgHNAlIaUUpRoFUujaBZHQKA5wv6j3251fZQoaAZoCWgPQwjBVDNrKS1wQJSGlFKUaBVLjmgWR0CgOc9y1eBydX2UKGgGaAloD0MINIY5QVuecUCUhpRSlGgVS7hoFkdAoDnrZamoBXV9lChoBmgJaA9DCCp0XmMXM3JAlIaUUpRoFUuTaBZHQKA5+bSZ0CB1fZQoaAZoCWgPQwhVhnE3yGlyQJSGlFKUaBVLwGgWR0CgOiLP+n63dX2UKGgGaAloD0MIaAdcV8yrc0CUhpRSlGgVS7BoFkdAoDo0Hnlny3V9lChoBmgJaA9DCNBCAkaXQHNAlIaUUpRoFUu7aBZHQKA6OHyEtd11fZQoaAZoCWgPQwjVWS2wBzdzQJSGlFKUaBVLyGgWR0CgOkH2ys0YdX2UKGgGaAloD0MIVz82yc+NcUCUhpRSlGgVS61oFkdAoDpG5nUUf3V9lChoBmgJaA9DCBCTcCFPNHJAlIaUUpRoFUvGaBZHQKA6YFPBSDR1fZQoaAZoCWgPQwg3cXK/g3lyQJSGlFKUaBVLfGgWR0CgOpbg0j1PdX2UKGgGaAloD0MI8pTVdL2+b0CUhpRSlGgVS6VoFkdAoDqkjTrmhnV9lChoBmgJaA9DCCo6ksv/U3FAlIaUUpRoFUuyaBZHQKA61fek56t1fZQoaAZoCWgPQwjAdjBin1xzQJSGlFKUaBVLs2gWR0CgOtYJVsDXdX2UKGgGaAloD0MISDFAogkGc0CUhpRSlGgVS7FoFkdAoDri1LJ0XHV9lChoBmgJaA9DCMKJ6NdWAHNAlIaUUpRoFUvmaBZHQKA7FfAKv3d1fZQoaAZoCWgPQwjNBS6PNQRyQJSGlFKUaBVLyWgWR0CgO0LVe8f3dX2UKGgGaAloD0MIN8R4zes3ckCUhpRSlGgVS9NoFkdAoDt3dsSCe3V9lChoBmgJaA9DCI6R7BEqU3FAlIaUUpRoFUuraBZHQKA7sBOpKjB1fZQoaAZoCWgPQwhUNUHUvV9zQJSGlFKUaBVL12gWR0CgO6/B3zMBdX2UKGgGaAloD0MISU27mOZWcUCUhpRSlGgVS79oFkdAoDw2H8CPqHV9lChoBmgJaA9DCF6hD5ZxaHBAlIaUUpRoFUuvaBZHQKA8QfCAMDx1fZQoaAZoCWgPQwhnYroQ6zpxQJSGlFKUaBVLwGgWR0CgPJ717IDHdX2UKGgGaAloD0MIyH4WSxEicUCUhpRSlGgVS6VoFkdAoDzjvgFX73V9lChoBmgJaA9DCL3hPnLrqHFAlIaUUpRoFUuZaBZHQKA9DldTo+x1fZQoaAZoCWgPQwiRup19Jc5yQJSGlFKUaBVLy2gWR0CgPVyMUAT7dX2UKGgGaAloD0MIAfvo1NVic0CUhpRSlGgVS+poFkdAoD2HsolUqHV9lChoBmgJaA9DCLYsX5fh0XJAlIaUUpRoFUu/aBZHQKA9j5C4SYh1fZQoaAZoCWgPQwhqiZXRyAlxQJSGlFKUaBVLpGgWR0CgPY/LLZBcdX2UKGgGaAloD0MIFAX6RB66cUCUhpRSlGgVS5poFkdAoD2swztTk3V9lChoBmgJaA9DCExV2uIa0XBAlIaUUpRoFUumaBZHQKA9rHnU2DR1fZQoaAZoCWgPQwiAYmTJ3ClzQJSGlFKUaBVLuGgWR0CgPcQazeGgdX2UKGgGaAloD0MIFtukovG0cUCUhpRSlGgVS59oFkdAoD3YPZqVQnV9lChoBmgJaA9DCIdqSrLOQ3JAlIaUUpRoFUuoaBZHQKA94lAu7H11fZQoaAZoCWgPQwhaLbDHBKRzQJSGlFKUaBVLy2gWR0CgPh2PT5O8dX2UKGgGaAloD0MIEjKQZxd5c0CUhpRSlGgVS+NoFkdAoD4k9lmOEXV9lChoBmgJaA9DCPZ+ox33sXBAlIaUUpRoFUuRaBZHQKA+KygPEsJ1fZQoaAZoCWgPQwj9vRQe9OhzQJSGlFKUaBVL5WgWR0CgPi3Upd8idX2UKGgGaAloD0MIQ+c1dolmc0CUhpRSlGgVS9FoFkdAoD4/BnBciXV9lChoBmgJaA9DCD6uDRWjGnJAlIaUUpRoFUu7aBZHQKA+WtvGZNR1fZQoaAZoCWgPQwii7gOQ2ohwQJSGlFKUaBVLqmgWR0CgPn9/rjYJdX2UKGgGaAloD0MIO3KkMzCLcUCUhpRSlGgVS9loFkdAoD6RwuM+/3V9lChoBmgJaA9DCN/BTxyAPnJAlIaUUpRoFUuJaBZHQKA+mxSHdoF1fZQoaAZoCWgPQwjn49pQcZZxQJSGlFKUaBVLq2gWR0CgPrenZTQ3dX2UKGgGaAloD0MITN9rCI5SdECUhpRSlGgVS8poFkdAoD7aaZx7zHV9lChoBmgJaA9DCDhLyXJSC3RAlIaUUpRoFUvRaBZHQKA+3chTwUh1fZQoaAZoCWgPQwjMKJZb2qlxQJSGlFKUaBVLx2gWR0CgPwm4ZuQ7dX2UKGgGaAloD0MIAKq4cQtubkCUhpRSlGgVS5toFkdAoD8o3T/hl3V9lChoBmgJaA9DCIqtoGmJ3XJAlIaUUpRoFUvFaBZHQKA/TLPD50t1fZQoaAZoCWgPQwhwB+qUR+ZzQJSGlFKUaBVLvGgWR0CgP1NtZV4pdX2UKGgGaAloD0MISZ2AJkI7c0CUhpRSlGgVS71oFkdAoD+EB4lhPXV9lChoBmgJaA9DCITXLm340HJAlIaUUpRoFUuSaBZHQKA/03Q2MsJ1fZQoaAZoCWgPQwhaKQRyyddzQJSGlFKUaBVLv2gWR0CgP+ig9NeudX2UKGgGaAloD0MI9FDbhpEkckCUhpRSlGgVS65oFkdAoEAHo1UEPnV9lChoBmgJaA9DCDrObcK9A3NAlIaUUpRoFUuQaBZHQKBABcDbJwN1fZQoaAZoCWgPQwhuMNRhhUNAQJSGlFKUaBVLZGgWR0CgQNbVjI7vdX2UKGgGaAloD0MIh8H8FTJzcECUhpRSlGgVS69oFkdAoEDksQNCq3V9lChoBmgJaA9DCLa93ZLce3NAlIaUUpRoFUvXaBZHQKBBAzAN5MV1fZQoaAZoCWgPQwjZeLDFLodyQJSGlFKUaBVLoGgWR0CgQRevIOpbdX2UKGgGaAloD0MIWCB6UmaycECUhpRSlGgVS5toFkdAoEEoiiZfD3V9lChoBmgJaA9DCDUJ3pAGP3FAlIaUUpRoFUusaBZHQKBBOWl/H5t1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 992, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.99, "ent_coef": 0.0, "vf_coef": 1, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo2-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a83714fc74253a972363fb416b9c37c089739991053c9a4642b7df79644fb74a
3
+ size 454812
ppo2-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo2-LunarLander-v2/data ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa96d89aa70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa96d89ab00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa96d89ab90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa96d89ac20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa96d89acb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa96d89ad40>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa96d89add0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa96d89ae60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa96d89aef0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa96d89af80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa96d8a0050>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fa96d8e3a80>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVbgAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCdmaUXZQoS4BLQEtAZYwCcGmUXZQoS0BLgEtAS0BldWF1Lg==",
25
+ "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
+ "net_arch": [
27
+ {
28
+ "vf": [
29
+ 128,
30
+ 64,
31
+ 64
32
+ ],
33
+ "pi": [
34
+ 64,
35
+ 128,
36
+ 64,
37
+ 64
38
+ ]
39
+ }
40
+ ]
41
+ },
42
+ "observation_space": {
43
+ ":type:": "<class 'gym.spaces.box.Box'>",
44
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
45
+ "dtype": "float32",
46
+ "_shape": [
47
+ 8
48
+ ],
49
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
50
+ "high": "[inf inf inf inf inf inf inf inf]",
51
+ "bounded_below": "[False False False False False False False False]",
52
+ "bounded_above": "[False False False False False False False False]",
53
+ "_np_random": null
54
+ },
55
+ "action_space": {
56
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
57
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
58
+ "n": 4,
59
+ "_shape": [],
60
+ "dtype": "int64",
61
+ "_np_random": null
62
+ },
63
+ "n_envs": 32,
64
+ "num_timesteps": 2031616,
65
+ "_total_timesteps": 2000000,
66
+ "_num_timesteps_at_start": 0,
67
+ "seed": null,
68
+ "action_noise": null,
69
+ "start_time": 1651788539.3275006,
70
+ "learning_rate": 0.0005,
71
+ "tensorboard_log": null,
72
+ "lr_schedule": {
73
+ ":type:": "<class 'function'>",
74
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
75
+ },
76
+ "_last_obs": {
77
+ ":type:": "<class 'numpy.ndarray'>",
78
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJqUzTzXIim7z4eNvJXthDwZVTC8kF5kPQAAgD8AAIA/ZuzdPEZ3rT87bgQ+B469vhH6gT3aytg9AAAAAAAAAACT3Gk+S3QhPwnbMj1DZg2/tvXEPhYItb0AAAAAAAAAAGa1hj0f8Z+77O6TvWPjTL5S9KO8feR2PgAAgD8AAAAAZsJQvQsAMD82P3m9WRmCv4Z2Zr2edYa9AAAAAAAAAAAAFLg8heOauTpZHL23M7w87HhYO7elpD0AAIA/AACAP/OB1j2NXTM+YEByviwWAL9W1HA6JRIlvgAAAAAAAAAAQB64vYmeXD3WNW0+h0Fbvg1ANDv4CbM8AAAAAAAAAACz4p09lGljP27B0T3W1nu/9HwSPgY7WbwAAAAAAAAAAPN/vz1Icbk797UAPVZOk7wCn8U92FCOvAAAAAAAAIA/86aFPSm8SLrJO0sylZiEsQ/jhju6FkqzAACAPwAAgD8Awmg8n7ShPxVp0z0xcTG/tY/aPIKZxD0AAAAAAAAAAM2Rcr1JMu8++wSNPUrbN78puHC9sEfcOwAAAAAAAAAAALLnvMOhKrqXiMm6uk8YtnL0PrsjBuw5AACAPwAAgD8DnVi+GUviPkj4lj6TZ/y+pI0gvY6YNT4AAAAAAAAAAOAtUj4TQNw+uxJtvuTtLb/YIOk9SkddvgAAAAAAAAAAzfzjOv6ptD/VI7Q9dtOuuoA2Aru7iKG8AAAAAAAAAADm5E894eiYulYU4bxOnVQ0GwmFuv5W2bMAAIA/AACAP/PRoL3plgu8KC8pPXnzQr6jTgi96vQOPwAAgD8AAIA/xpNSvnAc1j4MgMU+gUgHv5pKob3+kKg+AAAAAAAAAADNEo29hVP9uRqwqT1POCezB089u75HGLMAAIA/AACAP9r42b3D7RS6lno2PkfbHb5p47w81UZCvwAAAAAAAIA/oHssPs4p1D0bDcS+NR3uvjM9Ub3gICq+AAAAAAAAAABm9oe8pGQSOnfwGTka+3Yzi3lIvMIhPrgAAIA/AACAPxM8CL6CYQM+u9JpPgRsAL8Ao7Y9HNcQPQAAAAAAAAAAmsbJPI+2ULqzHvI2AGwKsO2h1boSVA22AACAPwAAgD9mht66j1ZNur+ILDGpQlwwgyqpOg4rADIAAIA/AACAP5r7jDwFGLY/lvesPjMUUT2QhRC87SMUuwAAAAAAAAAAAMuqveqvqT9t7Oa+V8Dfvqbal71K/Wi+AAAAAAAAAABNVQs9E8e6PwvCzT5wQDM+o65yPMg9/D0AAAAAAAAAACAVQT6HAzI/Vow1vSoE+r6AWak+R9STvQAAAAAAAAAAgFZIPVL47bkf9DG2DjOWsR2UBTsyjFo1AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
79
+ },
80
+ "_last_episode_starts": {
81
+ ":type:": "<class 'numpy.ndarray'>",
82
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
83
+ },
84
+ "_last_original_obs": null,
85
+ "_episode_num": 0,
86
+ "use_sde": false,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": -0.015808000000000044,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYLAbtm3Lc0CUhpRSlIwBbJRLuYwBdJRHQKA1NjgAIY51fZQoaAZoCWgPQwjg1XJnJggzQJSGlFKUaBVLUWgWR0CgNWH27FsIdX2UKGgGaAloD0MIODC5USTrcUCUhpRSlGgVS9toFkdAoDVnixVyWHV9lChoBmgJaA9DCOtySkBMP3FAlIaUUpRoFUupaBZHQKA1qDPnjhl1fZQoaAZoCWgPQwhpdAexM0ZzQJSGlFKUaBVLsGgWR0CgNij5KvmpdX2UKGgGaAloD0MIgEkqU4wrc0CUhpRSlGgVS8doFkdAoDYuz8gp0HV9lChoBmgJaA9DCAqGcw2zUnNAlIaUUpRoFUuzaBZHQKA2OLk0aZR1fZQoaAZoCWgPQwg3UrZIGhlwQJSGlFKUaBVLmGgWR0CgNlrNfPX1dX2UKGgGaAloD0MI78ftl89Gc0CUhpRSlGgVS7loFkdAoDZpSm65G3V9lChoBmgJaA9DCGyx22dVqHFAlIaUUpRoFUu6aBZHQKA2bnyNGVl1fZQoaAZoCWgPQwgnhXmPM4dyQJSGlFKUaBVLx2gWR0CgNnX49HMEdX2UKGgGaAloD0MIDhR4J989cUCUhpRSlGgVS55oFkdAoDZ6fDk2gnV9lChoBmgJaA9DCGrcm9+wfXBAlIaUUpRoFUutaBZHQKA2fmV7hNx1fZQoaAZoCWgPQwjGFRdH5YtzQJSGlFKUaBVLvmgWR0CgNp0BwMpgdX2UKGgGaAloD0MI/RNcrGjGckCUhpRSlGgVS75oFkdAoDa8ngHeJ3V9lChoBmgJaA9DCOIEptO6hXFAlIaUUpRoFUuLaBZHQKA2vHhCMP11fZQoaAZoCWgPQwhQjCyZo7ZwQJSGlFKUaBVLsmgWR0CgNt5z5oGqdX2UKGgGaAloD0MIMQqCx3dOckCUhpRSlGgVS4VoFkdAoDbviT+vQnV9lChoBmgJaA9DCO+qB8xD1nJAlIaUUpRoFUutaBZHQKA3HaURnOB1fZQoaAZoCWgPQwgTtTS3wtdyQJSGlFKUaBVLw2gWR0CgNylp48lpdX2UKGgGaAloD0MI31M57emYc0CUhpRSlGgVS+poFkdAoDcv/1g6VHV9lChoBmgJaA9DCErOiT00NXBAlIaUUpRoFUuHaBZHQKA3NY+0PYp1fZQoaAZoCWgPQwhDPBIvz3hzQJSGlFKUaBVLv2gWR0CgNzhmXgLrdX2UKGgGaAloD0MIlltaDUl0ckCUhpRSlGgVS8xoFkdAoDdGNDMNdHV9lChoBmgJaA9DCH4a9+b3fnJAlIaUUpRoFUuuaBZHQKA3RiCrcTJ1fZQoaAZoCWgPQwjpZRTL7aNxQJSGlFKUaBVLr2gWR0CgOAt/4IrwdX2UKGgGaAloD0MI+G9enPiSc0CUhpRSlGgVS8FoFkdAoDgeNkvsaHV9lChoBmgJaA9DCKHzGrsEC3NAlIaUUpRoFUvZaBZHQKA4LpGnXNF1fZQoaAZoCWgPQwhihPBo44NwQJSGlFKUaBVLn2gWR0CgOGsUIsy0dX2UKGgGaAloD0MIOdTvwlZQc0CUhpRSlGgVS9RoFkdAoDiHYe1a4nV9lChoBmgJaA9DCF7WxAJf7W5AlIaUUpRoFUubaBZHQKA4jHoX9BN1fZQoaAZoCWgPQwhjR+NQf3pyQJSGlFKUaBVLxmgWR0CgOPF5fMOgdX2UKGgGaAloD0MIuqC+ZY4gcUCUhpRSlGgVS7loFkdAoDkpa/yoXXV9lChoBmgJaA9DCJ9x4UCI8nFAlIaUUpRoFUvGaBZHQKA5J+XqqwR1fZQoaAZoCWgPQwjdmnRb4sJwQJSGlFKUaBVLjmgWR0CgOVbZ39rHdX2UKGgGaAloD0MIEDtT6PyGcUCUhpRSlGgVS41oFkdAoDlXJo0yg3V9lChoBmgJaA9DCKBvC5aqk3BAlIaUUpRoFUuOaBZHQKA5qBT4tYl1fZQoaAZoCWgPQwhzK4TVGLZzQJSGlFKUaBVLw2gWR0CgOagZCOWCdX2UKGgGaAloD0MIFYxK6gRXckCUhpRSlGgVS9loFkdAoDm0rVe8f3V9lChoBmgJaA9DCImXp3PFgHNAlIaUUpRoFUujaBZHQKA5wv6j3251fZQoaAZoCWgPQwjBVDNrKS1wQJSGlFKUaBVLjmgWR0CgOc9y1eBydX2UKGgGaAloD0MINIY5QVuecUCUhpRSlGgVS7hoFkdAoDnrZamoBXV9lChoBmgJaA9DCCp0XmMXM3JAlIaUUpRoFUuTaBZHQKA5+bSZ0CB1fZQoaAZoCWgPQwhVhnE3yGlyQJSGlFKUaBVLwGgWR0CgOiLP+n63dX2UKGgGaAloD0MIaAdcV8yrc0CUhpRSlGgVS7BoFkdAoDo0Hnlny3V9lChoBmgJaA9DCNBCAkaXQHNAlIaUUpRoFUu7aBZHQKA6OHyEtd11fZQoaAZoCWgPQwjVWS2wBzdzQJSGlFKUaBVLyGgWR0CgOkH2ys0YdX2UKGgGaAloD0MIVz82yc+NcUCUhpRSlGgVS61oFkdAoDpG5nUUf3V9lChoBmgJaA9DCBCTcCFPNHJAlIaUUpRoFUvGaBZHQKA6YFPBSDR1fZQoaAZoCWgPQwg3cXK/g3lyQJSGlFKUaBVLfGgWR0CgOpbg0j1PdX2UKGgGaAloD0MI8pTVdL2+b0CUhpRSlGgVS6VoFkdAoDqkjTrmhnV9lChoBmgJaA9DCCo6ksv/U3FAlIaUUpRoFUuyaBZHQKA61fek56t1fZQoaAZoCWgPQwjAdjBin1xzQJSGlFKUaBVLs2gWR0CgOtYJVsDXdX2UKGgGaAloD0MISDFAogkGc0CUhpRSlGgVS7FoFkdAoDri1LJ0XHV9lChoBmgJaA9DCMKJ6NdWAHNAlIaUUpRoFUvmaBZHQKA7FfAKv3d1fZQoaAZoCWgPQwjNBS6PNQRyQJSGlFKUaBVLyWgWR0CgO0LVe8f3dX2UKGgGaAloD0MIN8R4zes3ckCUhpRSlGgVS9NoFkdAoDt3dsSCe3V9lChoBmgJaA9DCI6R7BEqU3FAlIaUUpRoFUuraBZHQKA7sBOpKjB1fZQoaAZoCWgPQwhUNUHUvV9zQJSGlFKUaBVL12gWR0CgO6/B3zMBdX2UKGgGaAloD0MISU27mOZWcUCUhpRSlGgVS79oFkdAoDw2H8CPqHV9lChoBmgJaA9DCF6hD5ZxaHBAlIaUUpRoFUuvaBZHQKA8QfCAMDx1fZQoaAZoCWgPQwhnYroQ6zpxQJSGlFKUaBVLwGgWR0CgPJ717IDHdX2UKGgGaAloD0MIyH4WSxEicUCUhpRSlGgVS6VoFkdAoDzjvgFX73V9lChoBmgJaA9DCL3hPnLrqHFAlIaUUpRoFUuZaBZHQKA9DldTo+x1fZQoaAZoCWgPQwiRup19Jc5yQJSGlFKUaBVLy2gWR0CgPVyMUAT7dX2UKGgGaAloD0MIAfvo1NVic0CUhpRSlGgVS+poFkdAoD2HsolUqHV9lChoBmgJaA9DCLYsX5fh0XJAlIaUUpRoFUu/aBZHQKA9j5C4SYh1fZQoaAZoCWgPQwhqiZXRyAlxQJSGlFKUaBVLpGgWR0CgPY/LLZBcdX2UKGgGaAloD0MIFAX6RB66cUCUhpRSlGgVS5poFkdAoD2swztTk3V9lChoBmgJaA9DCExV2uIa0XBAlIaUUpRoFUumaBZHQKA9rHnU2DR1fZQoaAZoCWgPQwiAYmTJ3ClzQJSGlFKUaBVLuGgWR0CgPcQazeGgdX2UKGgGaAloD0MIFtukovG0cUCUhpRSlGgVS59oFkdAoD3YPZqVQnV9lChoBmgJaA9DCIdqSrLOQ3JAlIaUUpRoFUuoaBZHQKA94lAu7H11fZQoaAZoCWgPQwhaLbDHBKRzQJSGlFKUaBVLy2gWR0CgPh2PT5O8dX2UKGgGaAloD0MIEjKQZxd5c0CUhpRSlGgVS+NoFkdAoD4k9lmOEXV9lChoBmgJaA9DCPZ+ox33sXBAlIaUUpRoFUuRaBZHQKA+KygPEsJ1fZQoaAZoCWgPQwj9vRQe9OhzQJSGlFKUaBVL5WgWR0CgPi3Upd8idX2UKGgGaAloD0MIQ+c1dolmc0CUhpRSlGgVS9FoFkdAoD4/BnBciXV9lChoBmgJaA9DCD6uDRWjGnJAlIaUUpRoFUu7aBZHQKA+WtvGZNR1fZQoaAZoCWgPQwii7gOQ2ohwQJSGlFKUaBVLqmgWR0CgPn9/rjYJdX2UKGgGaAloD0MIO3KkMzCLcUCUhpRSlGgVS9loFkdAoD6RwuM+/3V9lChoBmgJaA9DCN/BTxyAPnJAlIaUUpRoFUuJaBZHQKA+mxSHdoF1fZQoaAZoCWgPQwjn49pQcZZxQJSGlFKUaBVLq2gWR0CgPrenZTQ3dX2UKGgGaAloD0MITN9rCI5SdECUhpRSlGgVS8poFkdAoD7aaZx7zHV9lChoBmgJaA9DCDhLyXJSC3RAlIaUUpRoFUvRaBZHQKA+3chTwUh1fZQoaAZoCWgPQwjMKJZb2qlxQJSGlFKUaBVLx2gWR0CgPwm4ZuQ7dX2UKGgGaAloD0MIAKq4cQtubkCUhpRSlGgVS5toFkdAoD8o3T/hl3V9lChoBmgJaA9DCIqtoGmJ3XJAlIaUUpRoFUvFaBZHQKA/TLPD50t1fZQoaAZoCWgPQwhwB+qUR+ZzQJSGlFKUaBVLvGgWR0CgP1NtZV4pdX2UKGgGaAloD0MISZ2AJkI7c0CUhpRSlGgVS71oFkdAoD+EB4lhPXV9lChoBmgJaA9DCITXLm340HJAlIaUUpRoFUuSaBZHQKA/03Q2MsJ1fZQoaAZoCWgPQwhaKQRyyddzQJSGlFKUaBVLv2gWR0CgP+ig9NeudX2UKGgGaAloD0MI9FDbhpEkckCUhpRSlGgVS65oFkdAoEAHo1UEPnV9lChoBmgJaA9DCDrObcK9A3NAlIaUUpRoFUuQaBZHQKBABcDbJwN1fZQoaAZoCWgPQwhuMNRhhUNAQJSGlFKUaBVLZGgWR0CgQNbVjI7vdX2UKGgGaAloD0MIh8H8FTJzcECUhpRSlGgVS69oFkdAoEDksQNCq3V9lChoBmgJaA9DCLa93ZLce3NAlIaUUpRoFUvXaBZHQKBBAzAN5MV1fZQoaAZoCWgPQwjZeLDFLodyQJSGlFKUaBVLoGgWR0CgQRevIOpbdX2UKGgGaAloD0MIWCB6UmaycECUhpRSlGgVS5toFkdAoEEoiiZfD3V9lChoBmgJaA9DCDUJ3pAGP3FAlIaUUpRoFUusaBZHQKBBOWl/H5t1ZS4="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 992,
98
+ "n_steps": 1024,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.99,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 1,
103
+ "max_grad_norm": 0.5,
104
+ "batch_size": 256,
105
+ "n_epochs": 16,
106
+ "clip_range": {
107
+ ":type:": "<class 'function'>",
108
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
109
+ },
110
+ "clip_range_vf": null,
111
+ "normalize_advantage": true,
112
+ "target_kl": null
113
+ }
ppo2-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bb0d1f9e792714a8a4568d4b12f397cf797282a6b01879e14c0f29331ee5006
3
+ size 290937
ppo2-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bea4db6464971b13f699eecc0e621aa7bc0c336d0f2e5fcfddf4c317f4699ca
3
+ size 146671
ppo2-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo2-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d829595038d7b807e3a670666a2965f43e92dc03d778c7a62acab653214ed5b8
3
+ size 194683
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 285.11403969096637, "std_reward": 17.639110476539813, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T22:46:03.678001"}