File size: 4,738 Bytes
e503ba5 223ef97 e503ba5 5c12863 e503ba5 5c12863 e503ba5 223ef97 e503ba5 ed20c5e e503ba5 87d15a7 ed20c5e e503ba5 ed20c5e e503ba5 ed20c5e e503ba5 7eb18f6 e503ba5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
language:
- en
license: mit
tags:
- chemistry
- SMILES
- product
datasets:
- ORD
metrics:
- accuracy
---
# Model Card for ReactionT5v2-forward
This is a ReactionT5 pre-trained to predict the products of reactions. You can use the demo [here](https://huggingface.co/spaces/sagawa/ReactionT5_task_forward).
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/sagawatatsuya/ReactionT5v2
- **Paper:** https://arxiv.org/abs/2311.06708
- **Demo:** https://huggingface.co/spaces/sagawa/ReactionT5_task_forward
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
You can use this model for forward reaction prediction or fine-tune this model with your dataset.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("sagawa/ReactionT5v2-forward", return_tensors="pt")
model = AutoModelForSeq2SeqLM.from_pretrained("sagawa/ReactionT5v2-forward")
inp = tokenizer('REACTANT:COC(=O)C1=CCCN(C)C1.O.[Al+3].[H-].[Li+].[Na+].[OH-]REAGENT:C1CCOC1', return_tensors='pt')
output = model.generate(**inp, num_beams=1, num_return_sequences=1, return_dict_in_generate=True, output_scores=True)
output = tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace(' ', '').rstrip('.')
output # 'CN1CCC=C(CO)C1'
```
## Training Details
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
We used the [Open Reaction Database (ORD) dataset](https://drive.google.com/file/d/1fa2MyLdN1vcA7Rysk8kLQENE92YejS9B/view?usp=drive_link) for model training. In addition, we used [USPTO_MIT dataset](https://yzhang.hpc.nyu.edu/T5Chem/index.html)'s test split to prevent data leakage.
The command used for training is the following. For more information about data preprocessing and training, please refer to the paper and GitHub repository.
```python
cd task_forward
python train.py \
--model='t5' \
--epochs=100 \
--lr=1e-3 \
--batch_size=32 \
--input_max_len=150 \
--target_max_len=100 \
--weight_decay=0.01 \
--evaluation_strategy='epoch' \
--save_strategy='epoch' \
--logging_strategy='epoch' \
--train_data_path='../data/preprocessed_ord_train.csv' \
--valid_data_path='../data/preprocessed_ord_valid.csv' \
--test_data_path='../data/preprocessed_ord_test.csv' \
--USPTO_test_data_path='../data/USPTO_MIT/MIT_separated/test.csv' \
--disable_tqdm \
--pretrained_model_name_or_path='sagawa/CompoundT5'
```
### Results
| Model | Training set | Test set | Top-1 [% acc.] | Top-2 [% acc.] | Top-3 [% acc.] | Top-5 [% acc.] |
|----------------------|---------------------------|----------|----------------|----------------|----------------|----------------|
| Sequence-to-sequence | USPTO_MIT | USPTO_MIT | 80.3 | 84.7 | 86.2 | 87.5 |
| WLDN | USPTO_MIT | USPTO_MIT | 80.6 (85.6) | 90.5 | 92.8 | 93.4 |
| Molecular Transformer| USPTO_MIT | USPTO_MIT | 88.8 | 92.6 | – | 94.4 |
| T5Chem | USPTO_MIT | USPTO_MIT | 90.4 | 94.2 | – | 96.4 |
| CompoundT5 | USPTO_MIT | USPTO_MIT | 86.6 | 89.5 | 90.4 | 91.2 |
| [ReactionT5 (This model)](https://huggingface.co/sagawa/ReactionT5v2-forward) | - | USPTO_MIT | 92.8 | 95.6 | 96.4 | 97.1 |
| [ReactionT5](https://huggingface.co/sagawa/ReactionT5v2-forward-USPTO_MIT) | USPTO_MIT | USPTO_MIT | 97.5 | 98.6 | 98.8 | 99.0 |
Performance comparison of Compound T5, ReactionT5, and other models in product prediction.
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
arxiv link: https://arxiv.org/abs/2311.06708
```
@misc{sagawa2023reactiont5,
title={ReactionT5: a large-scale pre-trained model towards application of limited reaction data},
author={Tatsuya Sagawa and Ryosuke Kojima},
year={2023},
eprint={2311.06708},
archivePrefix={arXiv},
primaryClass={physics.chem-ph}
}
``` |