--- language: - en license: mit tags: - chemistry - SMILES - product datasets: - ORD metrics: - accuracy --- # Model Card for ReactionT5-product-prediction This is a ReactionT5 pre-trained to predict the products of reactions. You can use the demo [here](https://huggingface.co/spaces/sagawa/predictproduct-t5). ### Model Sources - **Repository:** https://github.com/sagawatatsuya/ReactionT5v2 - **Paper:** https://arxiv.org/abs/2311.06708 - **Demo:** https://huggingface.co/spaces/sagawa/predictproduct-t5 ## Uses You can use this model for forward reaction prediction or fine-tune this model with your dataset. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("sagawa/ReactionT5-forward-v2", return_tensors="pt") model = AutoModelForSeq2SeqLM.from_pretrained("sagawa/ReactionT5-forward-v2") inp = tokenizer('REACTANT:COC(=O)C1=CCCN(C)C1.O.[Al+3].[H-].[Li+].[Na+].[OH-]REAGENT:C1CCOC1', return_tensors='pt') output = model.generate(**inp, num_beams=1, num_return_sequences=1, return_dict_in_generate=True, output_scores=True) output = tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace(' ', '').rstrip('.') output # 'CN1CCC=C(CO)C1' ``` ## Training Details ### Training Procedure We used the Open Reaction Database (ORD) dataset for model training. The command used for training is the following. For more information, please refer to the paper and GitHub repository. ```python python train_without_duplicates.py \ --model='t5' \ --epochs=100 \ --lr=1e-3 \ --batch_size=32 \ --input_max_len=150 \ --target_max_len=100 \ --weight_decay=0.01 \ --evaluation_strategy='epoch' \ --save_strategy='epoch' \ --logging_strategy='epoch' \ --train_data_path='/home/acf15718oa/ReactionT5_neword/data/all_ord_reaction_uniq_with_attr20240506_v3_train.csv' \ --valid_data_path='/home/acf15718oa/ReactionT5_neword/data/all_ord_reaction_uniq_with_attr20240506_v3_valid.csv' \ --test_data_path='/home/acf15718oa/ReactionT5_neword/data/all_ord_reaction_uniq_with_attr20240506_v3_test.csv' \ --USPTO_test_data_path='/home/acf15718oa/ReactionT5_neword/data/USPTO_MIT/MIT_separated/test.csv' \ --disable_tqdm \ --pretrained_model_name_or_path='sagawa/ZINC-t5' ``` ### Results | Model | Training set | Test set | Top-1 [% acc.] | Top-2 [% acc.] | Top-3 [% acc.] | Top-5 [% acc.] | |----------------------|---------------------------|----------|----------------|----------------|----------------|----------------| | Sequence-to-sequence | USPTO_MIT | USPTO_MIT | 80.3 | 84.7 | 86.2 | 87.5 | | WLDN | USPTO_MIT | USPTO_MIT | 80.6 (85.6) | 90.5 | 92.8 | 93.4 | | Molecular Transformer| USPTO_MIT | USPTO_MIT | 88.8 | 92.6 | – | 94.4 | | T5Chem | USPTO_MIT | USPTO_MIT | 90.4 | 94.2 | – | 96.4 | | CompoundT5 | USPTO_MIT | USPTO_MIT | 86.6 | 89.5 | 90.4 | 91.2 | | ReactionT5 (This model) | ORD | USPTO_MIT | 92.8 | 95.6 | 96.4 | 97.1 | | ReactionT5 | USPTO_MIT | USPTO_MIT | 97.5 | 98.6 | 98.8 | 99.0 | Performance comparison of Compound T5, ReactionT5, and other models in product prediction. ## Citation arxiv link: https://arxiv.org/abs/2311.06708 ``` @misc{sagawa2023reactiont5, title={ReactionT5: a large-scale pre-trained model towards application of limited reaction data}, author={Tatsuya Sagawa and Ryosuke Kojima}, year={2023}, eprint={2311.06708}, archivePrefix={arXiv}, primaryClass={physics.chem-ph} } ```