File size: 1,591 Bytes
822b369 c21e0f1 652196c 0c644db 652196c 822b369 c21e0f1 652196c c21e0f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
license: bsd-3-clause
metrics:
- code_eval
pipeline_tag: text-generation
tags:
- code
model-index:
- name: instruct-codegen-16B
results:
- task:
type: code-generation
dataset:
type: openai_humaneval
name: HumanEval
metrics:
- name: pass@1
type: pass@1
value: 0.371
verified: false
---
# Model Card for instruct-codegen-16B
<!-- Provide a quick summary of what the model is/does. -->
Instruct-codegen-16B is an instruction following codegen model based on [Salesforce codegen-16B-multi](https://huggingface.co/Salesforce/codegen-16B-multi) , finetuned on a dataset of 250k instruction-following samples in the alpaca format.
The data was not generated using any commercial LLM api.
The model achieves a result of 37.1% pass@1 on the HumanEval benchmark.
## Generation
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "sahil2801/instruct-codegen-16B"
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).half().to(device)
instruction = "Write a function to scrape hacker news."
prompt = f"Below is an instruction that describes a task.\n Write a response that appropriately completes the request.\n\n ### Instruction:\n{instruction}\n\n### Response:"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(**inputs,temperature=0.3,do_sample=True)
print(tokenizer.decode(outputs[0],skip_special_tokens=True))
``` |