sahita commited on
Commit
c773b8d
1 Parent(s): 0da7057

Update hyperparams.yaml

Browse files
Files changed (1) hide show
  1. hyperparams.yaml +21 -105
hyperparams.yaml CHANGED
@@ -1,40 +1,6 @@
1
- # Generated 2022-09-22 from:
2
- # /opt/speechbrain_LID/recipes/VoxLingua107/lang_id/hparams/train_ecapa.yaml
3
- # yamllint disable
4
- ################################
5
- # Model: language identification with ECAPA
6
- # Authors: Tanel Alum������������������e, 2021
7
- # ################################
8
 
9
 
10
-
11
- # Basic parameters
12
- seed: 1988
13
- __set_seed: !apply:torch.manual_seed [1988]
14
- output_folder: results/epaca/1988
15
- save_folder: results/epaca/1988/save
16
- train_log: results/epaca/1988/train_log.txt
17
- data_folder: ./
18
- rir_folder: ./
19
-
20
- shards_url: /opt/speechbrain_LID/recipes/VoxLingua107/lang_id/data_shards
21
- train_meta: /opt/speechbrain_LID/recipes/VoxLingua107/lang_id/data_shards/train/meta.json
22
- val_meta: /opt/speechbrain_LID/recipes/VoxLingua107/lang_id/data_shards/dev/meta.json
23
- train_shards: /opt/speechbrain_LID/recipes/VoxLingua107/lang_id/data_shards/train/shard-{000000..000009}.tar
24
- val_shards: /opt/speechbrain_LID/recipes/VoxLingua107/lang_id/data_shards/dev/shard-000000.tar
25
-
26
- # Set to directory on a large disk if you are training on Webdataset shards hosted on the web
27
- #shard_cache_dir:
28
-
29
- ckpt_interval_minutes: 5
30
-
31
- # Training parameters
32
- number_of_epochs: 1
33
- lr: 0.001
34
- lr_final: 0.0001
35
- sample_rate: 16000
36
- sentence_len: 3 # seconds
37
-
38
  # Feature parameters
39
  n_mels: 60
40
  left_frames: 0
@@ -44,22 +10,13 @@ deltas: false
44
  # Number of languages
45
  out_n_neurons: 2
46
 
47
- train_dataloader_options:
48
- num_workers: 2
49
- batch_size: 128
50
-
51
- val_dataloader_options:
52
- num_workers: 0
53
- batch_size: 32
54
-
55
- # Functions
56
- compute_features: &id003 !new:speechbrain.lobes.features.Fbank
57
  n_mels: 60
58
  left_frames: 0
59
  right_frames: 0
60
  deltas: false
61
 
62
- embedding_model: &id004 !new:speechbrain.lobes.models.ECAPA_TDNN.ECAPA_TDNN
63
  input_size: 60
64
  channels: [1024, 1024, 1024, 1024, 3072]
65
  kernel_sizes: [5, 3, 3, 3, 1]
@@ -67,76 +24,35 @@ embedding_model: &id004 !new:speechbrain.lobes.models.ECAPA_TDNN.ECAPA_TDNN
67
  attention_channels: 128
68
  lin_neurons: 256
69
 
70
- classifier: &id005 !new:speechbrain.lobes.models.Xvector.Classifier
71
  input_shape: [null, null, 256]
72
  activation: !name:torch.nn.LeakyReLU
73
  lin_blocks: 1
74
  lin_neurons: 512
75
  out_neurons: 2
76
 
77
- epoch_counter: &id007 !new:speechbrain.utils.epoch_loop.EpochCounter
78
- limit: 1
79
-
80
-
81
- augment_speed: &id001 !new:speechbrain.lobes.augment.TimeDomainSpecAugment
82
- sample_rate: 16000
83
- speeds: [90, 100, 110]
84
 
85
-
86
- add_rev_noise: &id002 !new:speechbrain.lobes.augment.EnvCorrupt
87
- openrir_folder: ./
88
- openrir_max_noise_len: 3.0 # seconds
89
- reverb_prob: 0.5
90
- noise_prob: 0.8
91
- noise_snr_low: 0
92
- noise_snr_high: 15
93
- rir_scale_factor: 1.0
94
-
95
- # Definition of the augmentation pipeline.
96
- # If concat_augment = False, the augmentation techniques are applied
97
- # in sequence. If concat_augment = True, all the augmented signals
98
- # # are concatenated in a single big batch.
99
- augment_pipeline: [*id001, *id002]
100
-
101
- concat_augment: false
102
-
103
- mean_var_norm: &id006 !new:speechbrain.processing.features.InputNormalization
104
 
105
  norm_type: sentence
106
  std_norm: false
107
 
108
  modules:
109
- compute_features: *id003
110
- augment_speed: *id001
111
- add_rev_noise: *id002
112
- embedding_model: *id004
113
- classifier: *id005
114
- mean_var_norm: *id006
115
- compute_cost: !name:speechbrain.nnet.losses.nll_loss
116
- # compute_error: !name:speechbrain.nnet.losses.classification_error
117
 
118
- opt_class: !name:torch.optim.Adam
119
- lr: 0.001
120
- weight_decay: 0.000002
121
-
122
- lr_annealing: !new:speechbrain.nnet.schedulers.LinearScheduler
123
- initial_value: 0.001
124
- final_value: 0.0001
125
- epoch_count: 1
126
-
127
- # Logging + checkpoints
128
- train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
129
- save_file: results/epaca/1988/train_log.txt
130
-
131
-
132
- error_stats: !name:speechbrain.utils.metric_stats.MetricStats
133
- metric: !name:speechbrain.nnet.losses.classification_error
134
- reduction: batch
135
 
136
- checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
137
- checkpoints_dir: results/epaca/1988/save
138
- recoverables:
139
- embedding_model: *id004
140
- classifier: *id005
141
- normalizer: *id006
142
- counter: *id007
 
1
+ pretrained_path: sahita/lang-VoxLingua107-ecapa
 
 
 
 
 
 
2
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  # Feature parameters
5
  n_mels: 60
6
  left_frames: 0
 
10
  # Number of languages
11
  out_n_neurons: 2
12
 
13
+ compute_features: !new:speechbrain.lobes.features.Fbank
 
 
 
 
 
 
 
 
 
14
  n_mels: 60
15
  left_frames: 0
16
  right_frames: 0
17
  deltas: false
18
 
19
+ embedding_model: !new:speechbrain.lobes.models.ECAPA_TDNN.ECAPA_TDNN
20
  input_size: 60
21
  channels: [1024, 1024, 1024, 1024, 3072]
22
  kernel_sizes: [5, 3, 3, 3, 1]
 
24
  attention_channels: 128
25
  lin_neurons: 256
26
 
27
+ classifier: !new:speechbrain.lobes.models.Xvector.Classifier
28
  input_shape: [null, null, 256]
29
  activation: !name:torch.nn.LeakyReLU
30
  lin_blocks: 1
31
  lin_neurons: 512
32
  out_neurons: 2
33
 
 
 
 
 
 
 
 
34
 
35
+ mean_var_norm: !new:speechbrain.processing.features.InputNormalization
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  norm_type: sentence
38
  std_norm: false
39
 
40
  modules:
41
+ compute_features: !ref <compute_features>
42
+ embedding_model: !ref <embedding_model>
43
+ classifier: !ref <classifier>
44
+ mean_var_norm: !ref <mean_var_norm>
 
 
 
 
45
 
46
+ # compute_error: !name:speechbrain.nnet.losses.classification_error
47
+ label_encoder: !new:speechbrain.dataio.encoder.CategoricalEncoder
48
+
49
+ pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
50
+ loadables:
51
+ embedding_model: !ref <embedding_model>
52
+ classifier: !ref <classifier>
53
+ label_encoder: !ref <label_encoder>
54
+ paths:
55
+ embedding_model: !ref <pretrained_path>/embedding_model.ckpt
56
+ classifier: !ref <pretrained_path>/classifier.ckpt
57
+ label_encoder: !ref <pretrained_path>/label_encoder.txt
 
 
 
 
 
58